基于模拟退火算法的中厚板精轧机 工作辊热膨胀模型

孙林^{1,2}) 张清东¹⁾ 陈先霖¹⁾ 戴江波¹⁾ 俞智华²⁾ 周光武²⁾ 1)北京科技大学机械工程学院,北京100083 2)武汉钢铁(集团)公司,武汉 430083

摘 要 应用模拟退火算法和有限差分法,建立起适用于武钢 2800 mm 四辊轧机的工作辊热 膨胀计算模型. 此模型是一个半经验的工程运用公式,其参数的估计采用传统的优化方法难以 解决,而用模拟退火算法却能得到有效地解决. 应用此模型来预报工作辊的一个轧制单位全过 程的热凸度变化值,其精度较高. 生产使用后表明,此模型具有较高的工程实用性,可以应用于 其他各类轧机的轧辊热辊形预测.

关键词 热辊形;模拟退火法;有限差分法;中厚板;板形 分类号 TG 335.12

板形精度正在成为中厚板的一项重要质量 指标和决定其市场竞争力的重要因素.中厚板 轧制中,工作辊热辊形尺寸的随时变动是钢板 板形的主要干扰因素之一.无论进行辊形设计 还是兼顾板形的压下负荷分配,都需要精确地 预测工作辊在工作中的热膨胀量.完善的轧机 板形控制系统更必须具备一个精确的工作辊热 膨胀量计算预报模型^[1-4].

轧制过程中轧辊的热行为的研究主要集中 在温度分布、热应力分布和热辊形3个方面,其 中轧辊的温度分布决定着后两者,是研究中的 重点和难点. 迄今为止,轧辊温度分布的研究主 要在精确理论计算方法研究和在线工程应用模 型的研究.

本文的研究着重建立一种可投入实时工业 控制的中厚板精轧机的轧辊温度场的计算模 型,为此将模拟退火算法与有限差分法相结合, 建立了一个二维的半经验的工作辊热辊形计算 模型.

1 工作辊热辊形的有限差分模型

实测表明,中厚板轧制中因工作辊热膨胀 引起的辊形变化可以达到0.1~0.3 mm,这对轧机 承载辊缝形状有显著的影响.求解轧辊热辊形 首先运用热传导方程求解轧辊的温度场分布规 律,然后根据温度场计算结果确定轧辊的热膨 胀系数。

1.1 工作辊热传导与热交换

应用有限差分法计算轧辊温度场,关键在 于确定轧辊的初始条件和边界条件.工作辊在 轧制过程中与其他介质的热交换非常复杂.

工作辊热量传入主要有:(1)高温轧件与工 作辊接触过程中的接触传热和辐射传热Q₁;(2) 轧件与工作辊之间的摩擦生热Q₂;(3)轧制时由 于变形功所转化的热量Q₃;(4)工作辊与支持 辊间摩擦生热Q₄;(5)工作辊轴承热量向轧辊传 导Q₅.

工作辊热量传出主要有:①工作辊的冷却 液与轧辊之间的对流换热q₁;②工作辊与支持 辊间的接触热传导q₂;③工作辊辊面与空气间 的对流换热q₃.

以上几种形式的热交换涉及的因素很多, 精确定量地描述十分困难,但它们的最终结果 都表现为使轧辊温度场发生改变.在保证计算 最终的等效结果具有一定精度的前提下,合理 地简化计算过程,符合实际生产的需要.

1.2 温度场模型简化

工作報温度场在轧制过程中,主要经历2 个周期性变化:(1)工作辊的整体加热和冷却过 程.当轧钢时,工作辊的整体温度升高;当待钢 时,工作辊的整体温度下降;当轧钢时间内或待

收稿日期 2001-12-12 孙林 男,36岁,高级工程师

^{*} 国家自然科学基金资助课题(No.59835170)

钢时间内,工作辊的热量传入与传出大体相等, 即工作辊的整体温度场达到动态平衡.(2)轧制 时工作辊在转动1周的过程中,辊面温度变化 过程.首先与高温轧件接触,辊面温度迅速上 升,然后经过2次喷淋冷却至一定温度,如此周 而复始的变化.

由于以上2个周期性变化过程均涉及到工 作報的径向、轴向和周向传热,因此,严格地讲, 求解工作辊的温度场应该从分析轧辊的三维温 度变化出发.但对于工程实际应用来讲,这会大 大增加求解的复杂性和计算量,是不现实的,也 是难以实现的.另一方面,大量的研究和试验表 明,由于轧制时工作辊高速转动,温度场的波动 仅发生在轧辊极薄的表层上,而在任一截面的 圆周方向几乎无温度波动.同时,工程实际应用 中,主要关心工作辊热凸度的大小和分布,由于 轧辊表面的温度分布可以通过实测得到,因此, 建立起实测表面温度与工作辊热辊形的关系是 十分重要.

基于以上原因,本文忽略轧辊圆周方向温 度场的变化,将工作辊温度场视为温度沿轴对 称分布的圆柱体问题求解,从而建立工作辊的 温度场模型.这样轧辊的温度场可用z轴为对称 轴的圆柱坐标系,建立二维动态导热方程^[1,4]:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial T}{\partial t} + \frac{\partial^2 T}{\partial z^2} \right)$$
(1)

式中,*T*为工作辊热力学温度,K;*t*为 时间坐标, s;*r*为工作辊径向坐标,m;*z*为工作辊轴向坐标, m;*c*为轧辊的比热容,J·(kg·K)⁻¹; λ 为轧辊的导热 系数,W·(m·K)⁻¹; ρ 为轧辊的密度,kg·m⁻³.

由于实际轧辊边界条件相当复杂,要想用 解析方法求解精确解往往是不可能的,为了满 足工程实际需要,本文应用有限差分法进行数 值近似求解计算^[5].根据向后差分导热微分方程 和能量守恒建立起来的一维显式差分格式为: $c:m:\frac{T(k,n+1)-T(k,n)}{2}=a:\Delta l:l_m:T(T_n-T(k,n))$;

$$\Delta t = \Delta t - \Delta t - \tau_{arc} \cdot \zeta (T_p - T(k,n)) + \gamma \cdot 2\pi r \cdot \Delta l \cdot \eta \cdot (T_A - T(k,n)) + \gamma \cdot 2\pi r \cdot \Delta l \cdot \eta \cdot (T_A - T(k,n)) + \frac{\lambda \cdot \pi r^2}{\Delta l} (T(k+1,n) + T(k-1,n) - 2T(k,n))$$
(2)

$$T(k,n+1) = T(k,n) + \frac{\alpha \cdot \operatorname{arc} \cdot \zeta}{\rho \cdot c \cdot \pi r^2} \cdot (T_p - T(k,n)) \cdot \Delta t + \frac{2\beta \cdot \zeta}{\rho \cdot c \cdot r} \cdot (T_W - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n)) \cdot \Delta t + \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r} \cdot (T_A - T(k,n))$$

$$\frac{\lambda}{\rho \cdot c \cdot \Delta l^2} \cdot (T(k+1,n) + T(k-1,n) - 2T(k,n)) \cdot \Delta t$$
(3)

式中, Δt 为计算的时间间隔,s;T(k,n+1)为第k片 在(n+1)· Δt 时刻的温度,K;T(k,n)为第k片在n· Δt 时刻的温度,K;T(k-1,n)为第k-1片在n· Δt 时刻 的温度, K; T(k+1,n)为第k+1片在 $n \cdot \Delta t$ 时刻的温 度,K;T,为轧件的温度,K;T,为冷却水的温度, $K;T_A$ 为空气的温度,K; l_m 为轧制接触弧长,m;r 为轧辊的半径, $m:\Delta$ /为所划网格单元的长度, m; m为所划网格单元的质量,kg; ζ高温钢板接 触轧辊圆周的比例,%;č为水接触轧辊圆周的 比例,%;n为空气接触轧辊圆周的比例,%;a为 咬钢区内,高温钢板与轧辊的换热系数, W·(m²·K)⁻¹,与氧化铁皮厚度、润滑条件、钢板温 度等因素有关;β为冷却水与轧辊的换热系数, W·(m²·K)⁻¹,与喷嘴的安装位置、喷射角度、水流 密度、水压、轧辊表面温度等有关;y为空气与轧 辊的换热系数,W·(m²·K)⁻¹,与厂房布局、轧机结 构、环境温度、时令季节等有关; λ为轧辊的导 热系数,W·(m²·K)⁻¹,与轧辊材质、温度、结构等 有关[5,6].

上述各参数中,只有*a*,*β*,*γ*,*λ*,*ζ*,*ξ*,*η*等参数与 轧机的某些实际因素有关,很难精确表达,通过 查阅文献确定显然是不现实的.所以需建立一 种简化的、半经验的计算模型,应用模拟退火算 法,结合大量实际测量数据进行各参数估计,求 出符合武钢 2800 mm 四辊轧机的相关数值,从 而达到理想的效率和精度.简化式(3),令

 $K_1 = \frac{\alpha \zeta}{\rho \cdot c \cdot \pi r^2}, K_2 = \frac{2\beta \cdot \xi}{\rho \cdot c \cdot r}, K_3 = \frac{2\gamma \cdot \eta}{\rho \cdot c \cdot r}, K_4 = \frac{\lambda}{\rho \cdot c \cdot \Delta l^2}$ (4) 代入(3)得: $T(k,n+1) = T(k,n) + K_1 \cdot l_{ac} \cdot (T_p - T(k,n)) \cdot \Delta t + K_2 \cdot (T_w - T(k,n)) \cdot \Delta t + K_3 \cdot (T_A - T(k,n) \cdot \Delta t + K_4 \cdot (T(k+1,n) + T(k-1,n) - 2T(k,n)) \cdot \Delta t$ (5) 式中, K_1 为咬钢区内, 高温钢板与轧辊之间的等效传热参数, $(m \cdot s)^{-1}; K_2$ 冷却水与轧辊之间的等效传热参数, $s^{-1}; K_3$ 为空气与轧辊之间的等效传 热参数, $s^{-1}; K_4$ 为轧辊的等效导热参数, s^{-1} . 以上 K_1, K_2, K_3, K_4 各参数由模拟退火算法确定.

2 工作辊热辊形的计算模型

2.1 工作辊温度场计算

根据上述理论,计算工作辊温度场.首先假 定某个工作辊轧制单位中,第*i*块钢第*j*道次的轧 制时间为 $t_{s}(i,j)$,返钢时间为 t_{v} ,第*i*块钢等第*i*+1 块钢的待钢时间为 t_{0} .如果停轧时间 $t_{0}>1$ h时,并 且冷却水打开,模型认为各片温度相等.如果停 轧时间 $t_{0}\leq1$ h,则以 Δt 为梯极进行下一步.其次 对工作辊分片进行计算(如图1所示),每片为 Δl .辊身长L,分了 $L/\Delta l$ 片;辊颈长 L_{N} ,分了 $L_{N}/\Delta l$ 片.计算各片温度时主要考虑了辊片与相应的

Fig.1 Temperature field model of work roll

高温钢板之间的热交换、轧辊与空气之间的热 交换、轧辊与冷却水之间的热交换以及轧辊各 片之间的热交换.记当前片号为k.然后,根据现 场实测数据,确定计算过程中各边界条件.为此 作如下假设和取值:①工作辊的材质均匀,且无 内热源;辊身的初始温度沿辊身长度均匀分布, 与环境温度相同.②环境温度(即空气的温度) 与季节有关,12~2月取为10℃,3~6月取为18℃; 7~9月取为25℃,10~11月取为18℃.③冷却水 为非循环用水,5~10月取为20℃,11~4月取为 10℃.④辊颈轴承处温度取为40℃.⑤钢板与工 作辊的热交换以对流形式体现,忽略其对轧辊 的辐射传热;钢板温度沿宽度方向均匀,温度值 取现场温度探测仪记录的实测值.

最后,按以下步骤迭代求解.

(1)当 *k*=1 或 *k=P*_{2Ls+L}(下式中相应的*J*=1 或 *J*=-1)时:

 $T(k,n+1)=T(k,n)+W_{\text{lon}}\cdot K_2(T_{\text{W}}-T(k,n))\cdot \Delta t+$

 $(1-W_{lon})\cdot K_3\cdot (T_A-T(k,n))\cdot \Delta t+K_4\cdot$

 $(T(k+J,n)+T_{B}-2T(k,n))\cdot\Delta t$ (6) (2)当 $k=P_{L_{a}}$ 或 $k=P_{L_{a+L+1}}$ (下式中相应的J=1或 J=-1)时:

$$T(k,n+1)=T(k,n)+K_{2}\cdot(T_{w}-T(k,n))\cdot\Delta t+K_{3}\cdot (T_{A}-T(k,n))\cdot\Delta t+K_{4}\cdot[T(k-J,n)-T(k,n))\cdot\Delta t + K_{5}\cdot(T(k+J,n)-T(k,n))]\cdot\Delta t$$
(7)
(3)当 $k=P_{L_{n+1}}$ 或 $k=P_{L_{n+L}}$ (下式中相应的J=1或
J=-1)时:
 $T(k,n+1)=T(k,n)+K_{2}\cdot(T_{w}-T(k,n))\cdot\Delta t+K_{3}\cdot (T_{A}-T(k,n))\cdot\Delta t+K_{4}\cdot[T(k+J,n)-T(k,n)+K_{5}\cdot(T(k-J,n)-T(k,n))]\cdot\Delta t$ (8)
(4)当 k 在其他区间时:
① 当 $k\in[2, P_{L_{n-1}}]\cap[P_{L_{n+2}}, P_{L_{n+n-2}}]$ 或 $k\in[P_{L_{n+n-2}}, P_{L_{n+n-1}}]$
 $T(k,n+1)=T(k,n)+K_{2}\cdot(T_{w}-T(k,n))\cdot\Delta t+K_{3}\cdot(T_{A}-T(k,n))$

T(*k*,*n*))·Δ*t*+*K*₄·[*T*(*k*+1,*n*)+*T*(*k*-1,*n*)-2*T*(*k*,*n*))·Δ*t*(9) ② 当 *k*=*P*_{*L*₁+x₁-1} 或*k*=*P*_{*L*₁+x₂₊₁} bf,

令
$$f = |\frac{B}{2 \cdot \Delta l} - INT(\frac{B}{2 \cdot \Delta l})|; \exists k \in [P_{L_n+x1}, P_{L_n+x2}],$$

令 $f=1$.则有:
 $T(k,n+1)=T(k,n)+f\cdot K_1 \cdot \operatorname{arc} \cdot (T_P - T(k,n)) \cdot \Delta t +$
 $W_{2on} \cdot K_2(T_W - T(k,n)) \cdot \Delta t + (1 - W_{2on}) \cdot K_3(T_A - T(k,n)) \cdot$
 $\Delta t + K_4 \cdot (T(k+1,n)+T(k-1,n)-2T(k,n)) \cdot \Delta t$ (10)
式中, T_B 为辊颈轴承处温度, $K; W_{1on}$ 为轴承座冷
却开关,打开时 $W_{1on}=1$,关闭时 $W_{1on}=0; W_{2on}$ 为轧

辊冷却水开关,打开时W20n=1,关闭时W20n=0;Ks为 辊颈与辊身结合处热传导折合系数;B为所轧钢 板的宽度,m.

2.2 工作辊热辊形计算

求得温度场后, 轧辊热辊形计算采用适合 工程计算的半经验近似方法, 即由上述计算得 到各单元温度值(即轧辊表面温度值), 然后根 据各单元与端点单元的温差来计算. 工作辊第 k片在t=n·Δ时刻的的热凸度^{11.41}:

 $C_{w}(k,t) = D_{w} \cdot \beta_{i} \cdot [T(k,n) - T(P_{L_{s+1}},n)]$ (11) 式中, $k \in [P_{L_{s+1}}, P_{L_{s+L}}], \beta_{i}$ 为热膨胀系数, $K^{-1}; D_{w}$ 为 工作辊直径,m.

3 模拟退火算法原理

模拟退火算法 (Simulated Annealing Algorithm, 简称 SAA)源于对固体退火过程的模拟, 采用Metropolis接受准则,并用一组称为冷却进 度表的参数控制算法进程,使算法在多项式时 间里给出一个近似最优解.它是局部搜索算法 的扩展,理论上是一个全局最优算法.它是一个 解决大规模组合优化问题的有效算法,能够帮 助解决许多复杂的实际优化问题,比如超大规 模集成电路(VLSI)设计、图像处理、神经网络计 算等等⁽⁷⁻¹⁰⁾.

设优化问题的一个解i及其目标函数f(i)分 别与固体的一个微观状态i及其能量函数E,等 价,固体退火过程中温度T的角色由算法进程中 递减其值的控制参数t∈R⁺担当,并由与Metropolis 准则对应的转移概率P,

 $P_{i}(i \rightarrow j) = \begin{cases} 1 & f(j) \le f(i) \\ \exp[f(i) - f(j))/t] & f(j) > f(i) \end{cases}$ (12)

确定是否接受从当前解i到新解j的转移.开始让 t取较大的值(与固体的熔解温度相对应),在进 行足够多的转移后,缓慢减小t的值(与"徐徐" 降温相对应),当控制参数t趋于零时,满足某个 停止准则时算法终止,最终求得优化问题的全 局最优解¹⁰¹.控制参数t的取值定义为:

$$t = \alpha^n \cdot T_0 \tag{13}$$

式中, α 为衰减系数, $0 < \alpha < 1;n$ 为迭代次数; T_0 为初始温度,对应固体熔解温度.

停止准则:当迭代次数n→nmax时,即达到设 定的最大迭代次数时,计算程序运行停止.由于 无法保证算法所得最后一组解一定是最优的, 本文因此采用具有记忆的模拟退火算法,使之 保存住搜索过程中遇到过的最优结果.

4 基于模拟退火法的工作辊热辊形 模型参数估计与验证

4.1 目标函数确定

工作辊热辊形模型中 α , β , γ , λ , ξ , η 等参数影 响因素较多,需要根据轧机的实际情况进行估 计.本文采用记忆的模拟退火算法,对式(5)中 K_1, K_2, K_3, K_4 4个等效参数进行估计.建立目标 函数:

$$\min F = \sum (C_{w}(x_{i}) - C_{0}(x_{i}))^{2}$$
(14)

式中,*C*_w(*x*_i),*C*₀(*x*_i)为沿工作辊辊身坐标*x*_i处的预 报和实测的热辊形值,m;*e*为工作辊的热辊形实 测的总点数.

4.2 模型验证

为了验证计算模型,可以通过用现场实际 生产结果进行比较和参数估计.对于某对工作 辊,在轧完最后一块钢板下机时,立即用 80T-150 热敏点温仪(接触式)和红外热像仪 THV550测量工作辊表面温度场,并记录各块钢 的相关工艺参数,然后代入热辊形模型中进行 模拟计算.

最终计算所得的模型参数估计值: K_1 =4.535 ×10⁻⁶(m·s)⁻¹; K_2 =2.466×10⁻³s⁻¹; K_3 =5.695×10⁻⁵s⁻¹; K_4 =0.448 s⁻¹; λ =40.472 W·(m·K)⁻¹; β_i =12.029 K⁻¹; minF=4570.图 2 为工作辊温度场计算值与实测

Fig.2 Calculated and measured values of temperature field for work roll

值的比较图,图3为工作辊热辊形计算值与实测值的比较图,可见计算模型能达到较高的精度.图4为计算得到的某个轧制单位轧制过程 中工作辊的热凸度变化情况.计算结果与实测 结果比较表明,此模型建立思想和方法具有工 程实用性,可以运用到实际生产中.

Fig.3 Calculated and measured values of thermal contour for work roll

5 结语

(1)中厚板轧制中,工作辊因轴向不均匀热 膨胀引起的辊形变化明显,并在轧制过程中随 时间而变化时,它是钢板板形的主要干扰因素, 也是辊形设计和压下负荷分配要考虑的基础 条件.

(2)应用模拟退火算法,以实测数据优化并确定各参数,中厚板精轧机实时试验证明,这种 方法为解决预测模型误差大的问题提供了一条 新的思路.

(3)针对中厚板精轧机工作辊热辊形,用模 拟退火算法结合有限差分法来建模的方法,也 适用于其他各类轧机的轧辊热辊形预测.同时 应用模拟退火算法优化估计模型参数的方法也 是适用于其他类似复杂问题的研究.

参考文献

- Ginzburg V B. High-Quality Steel Rolling Theory and Practice[M]. New York: Marcel Dekker, 1993
- 2 孙林,张清东,陈先霖,等.中板轧机板形控制性能的 研究[J].钢铁,2002,37(1):34
- 3 Ginzburg V B, Bakhtar F A, Lssa R J. Application of Coolflex Model for Analysis of Work Roll Thermal Conditions in Hot Strip Mills[J]. Iron and Steel Engineer, 1997, 32 (11): 38
- 4 王国栋. 板形控制和板形理论[M]. 北京:冶金工业出版社,1986. 380
- 5 吴庆海. 热轧宽带钢板形控制模型及策略的研究[D]:

[学位论文].北京:北京科技大学,2001

- 6 谭真, 郭广文. 工程合金热处理[M].北京:冶金工业出版社, 1994. 137
- 7 康立山,谢云,尤矢勇,等.非线性并行算法一模拟退 火算法[M].北京:科学出版社,1997
- 8 Ibrahim O H. Heuristics for the Generalized Assignment Problem: Simulated Annealing and Tabu Search Approaches[J]. OR Specktrum, 1995, 17: 211
- 9 Kirkpatrick S. Optimization by Simulated Annealing: Quantitative Studies[J]. J of Statis Phy, 1996, 34: 975
- 10 Aarts E H L, Van Laarhoven P J M. Simulation Annealing Theory and Application[M]. Dordrecht: D Reidel Publishing Company, 1987.17

Thermal Contour Model of Work Roll in Plate Mills by Simulated Annealing Algorithm

SUN Lin^{1,2}, ZHANG Qingdong¹, CHEN Xianlin¹, DAI Jiangbo¹, YU Zhihua², ZHOU Guanwu²

Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China
 Wuhan Iron and Steel (Group) Co, Wuhan 430083, China

ABSTRACT Employing Simulated Annealing Algorithm(SAA) and Finite Difference Method, a calculation model of work roll thermal contour was built in a 2800 mm 4-high mill of Wuhan Iron and Steel (Group) Co.. The model was a semi-theory practical formula. Its pattern and magnitude were still hardly defined with classical optimization methods. But the problem could be resolved by SAA. It was pretty high precision to predict the values of work roll thermal crown in a rolling unit. After one year application, the results show that the model is feasible in engineering, and it could be applied to predict the roll thermal contour of other mills.

KEY WORDS thermal contour; simulated annealing algorithm; finite difference method; plate; shape