基于 LMI 方法的轧机主传动系统 机电振动 H。控制

张瑞成 童朝南 李伯群

北京科技大学信息工程学院, 北京 100083

摘 要 为了抑制机电振动,保证对于扰有良好的动态抑制作用且无静态扰动误差,针对轧机主 传动系统,建立了基于模型匹配二自由度系统的状态空间模型,并将轧机主传动系统机电振动控 制设计问题归结为标准的 H。控制问题;用线性矩阵不等式法得到输出反馈 H。控制器,以保证系 统的鲁棒性. 仿真研究结果表明,该方法有效改善了轧机主传动系统的跟踪性能,抑制了系统的机 电振动现象,同时减小了轧制负荷扰动引起的动态速降,

关键词 轧机;机电振动;线性矩阵不等式法;模型匹配;控制器

分类号 TP273; TG333

随着现代化工业的迅猛发展,各行各业对薄 板带钢的需求量不断增加,同时对其质量的要求 也越来越高. 因此,连轧机对主传动系统提出了 高精度和高动态响应的技术要求, 在轧机主传动 系统中,由于驱动电机和轧辊间采用长轴连接,其 机械系统的固有频率大约为 10~20 Hz. 轧机传 动系统的响应越来越快,逐步接近机械系统的固 有频率,当机电配合不适当时容易产生传动系统 的机电振动现象,并且该现象会对轧制工艺、负荷 变化等诸多因素产生影响. 机电振动一方面破坏 了控制系统的稳定性,另一方面会造成机械传动 部件的破坏. 此外, 轧制负荷扰动造成调速系统 的动态速降将影响轧机工艺自动控制及成品质 量. 轧钢过程中产生的机电振动一般分三类:(1) 轧制过程中负荷周期性变化产生的振动. (2) 轧 制过程负荷突变产生的激励振动. (3) 电机与机 械弹性联接产生的机电共振现象.

尽管轧机传动机电振动现象普遍存在,但国 内有关轧机传动机电振动的研究报道很少[1]. 抑 制轧机主传动系统的机电振动现象,常用的控制 方法有共振比控制、状态反馈控制、LQG控制、 H∞控制等^[2-6]. 状态反馈控制方法利用状态观 测器对诸如负荷力矩、连接轴力矩、轧辊速度等难 以测量的状态进行重构,再利用重构状态实现主

收稿日期: 2004-12-28 | 修回日期: 2005-03-14 作者简介: 张瑞成(1975—), 男, 博士研究生; 童朝南 (1955—), 男,教授,博士生导师

传动系统的状态反馈控制,从而较好地抑制了机 电振动和轧制负荷扰动引起的动态速降[3-5],但 该方法对系统参数变化比较敏感, 鲁棒性差. 文 献[6]提出了 Hm控制方法以保证系统的鲁棒性, 但对轧机主传动系统的跟踪性能考虑甚少,系统 超调较大. 为此,提出了基于模型匹配的二自由 度轧机传动机电振动 H。控制方法,即通过对前 馈控制器和反馈控制器的设计,将一个受扰动的 系统匹配成满足性能要求的系统, 二自由度控制 是对输入和输出分别设计控制器,以获得对给定 的跟踪和对扰动的抑制, 而以误差为控制器唯一 输入的单自由度控制往往难以满足要求. 因此, 先将轧机主传动系统模型匹配二自由度机电振动 控制器设计问题归结为标准的 H_{∞} 控制问题^[7], 然后应用 LMI 方法得到输出反馈 H∞控制器,使 系统既有效地抑制了轧机主传动系统的机电振 动,又能减小轧制负荷扰动引起的动态速降,同时 还能保证对指令的准确跟踪.

1 轧机主传动系统模型

轧机主传动系统是一个由若干个惯性元件 (电机、联轴器和轧辊等)和弹性元件(连接轴等) 组成的"质量弹簧系统",实际中其力学模型可以 大致等效为图 1 所示的两惯性弹性系统. 其中 $J_{\rm m}, J_{\rm L}$ 分别为电机和负载的转动惯量; $T_{\rm m}, T_{\rm L}$, Tsh分别为电机力矩、负载阻力矩和弹性轴扭转力 矩; $K_{\rm sh}$ 为弹性轴刚度系数; $\omega_{\rm m}$, $\omega_{\rm I}$ 为电机和负载 的角速度.

图 1 两质体轧机机电系统模型

Fig. 1 Model for a two-mass rolling mill system

根据机械动力学原理,可得系统微分方程为:

$$\begin{cases} J_{m}\dot{\omega}_{m} = T_{m} - T_{sh} \\ \dot{T}_{sh} = K_{sh}(\omega_{m} - \omega_{L}) \\ J_{L}\dot{\omega}_{L} = T_{sh} - T_{L} \end{cases}$$
 (1)

由式(1)可得机电模型的状态方程为:

$$\begin{cases} \dot{\boldsymbol{x}}_{p} = \boldsymbol{A}_{p} \boldsymbol{x}_{p} + \boldsymbol{B}_{d} T_{L} + \boldsymbol{B}_{p} T_{m} \\ \boldsymbol{y}_{p} = \boldsymbol{C}_{p} \boldsymbol{x}_{p} \end{cases}$$
 (2)

式中,
$$A_p = \begin{bmatrix} 0 & -\frac{1}{J_{\rm m}} & 0 \\ K_{\rm sh} & 0 & -K_{\rm sh} \\ 0 & \frac{1}{J_{\rm L}} & 0 \end{bmatrix}$$

$$\boldsymbol{B}_{d} = \begin{bmatrix} 0 & 0 & -\frac{1}{J_{L}} \end{bmatrix}^{T}, \ \boldsymbol{B}_{p} = \begin{bmatrix} \frac{1}{J_{m}} & 0 & 0 \end{bmatrix}^{T},$$

$$C_p = [1 \quad 0 \quad 0], x_p = [\omega_m \quad T_{sh} \quad \omega_L]^T.$$

系统特征方程为:

$$|sI - A_p| = s \left[s^2 + \left(\frac{K_{sh}}{I_m} + \frac{K_{sh}}{I_L} \right) \right] = 0 \quad (3)$$

特征方程有三个特征根,一对虚轴共轭极点 $s_{1,2}$,一个 $s_3=0$ 的极点.

$$s_{1,2} = \pm j \sqrt{K_{\rm sh}(J_{\rm m}^{-1} + J_{\rm L}^{-1})}$$
 (4)

根据李亚普诺夫稳定理论:若系统特征方程的所有根均为负实数或实部为负的复数,则系统的运动是稳定的或渐近稳定的.特征方程存在虚轴共轭极点,没有负实部,所以该系统是临界不稳定的.

根据现代控制理论,可以写出系统的传递函数为:

$$\frac{\omega_{\rm m}}{T_{\rm L}} = C_{\rm p} (s \mathbf{I} - \mathbf{A}_{\rm p})^{-1} \mathbf{B}_{\rm d} = \frac{K_{\rm sh}}{J_{\rm m} J_{\rm L} s} \frac{1}{s^2 + \omega_0^2}$$
 (5)

$$\frac{\omega_{\rm m}}{T_{\rm m}} = C_{\rm p} (s \mathbf{I} - \mathbf{A}_{\rm p})^{-1} \mathbf{B}_{\rm p} = \frac{1}{J_{\rm m} s} \frac{s^2 + \omega_{\rm a}^2}{s^2 + \omega_{\rm 0}^2}$$
 (6)

式中, $\omega_0 = \sqrt{K_{sh}(J_m^{-1} + J_L^{-1})}$ 为机械系统的固有振荡频率, $\omega_a = \sqrt{K_{sh}/J_L}$ 为弹性反振荡频率.

从以上两式可以看出,由于 $\omega_{\rm m}/T_{\rm m}$ 中存在一个弹性反振荡频率 $\omega_{\rm a}$,增强了由 $T_{\rm m}$ 到 $\omega_{\rm m}$ 的稳定性,而 $\omega_{\rm m}/T_{\rm L}$ 中只存在 $\omega_{\rm 0}$,因而在 $T_{\rm L}$ 发生变化时,系统容易发生扭振.

2 模型匹配两自由度系统状态空间 模型

2.1 模型匹配两自由度问题

考虑如下给定的被控对象:

$$\mathbf{y}_{\mathbf{p}}(s) = \mathbf{P}(s)\mathbf{u}(s) \tag{7}$$

其中,u(s)为控制输入, $y_p(s)$ 为对象输出,传递函数 P(s)可表示为:

$$P(s) = \frac{N(s)}{T(s)} \tag{8}$$

N(s)为 m 阶多项式, T(s)为 n(n>m)阶多项式且 N(s)和 T(s)为互质.

对于给定的被控对象, 假设被控对象的期望输出 v_m 由下式描述:

$$y_{m}(s) = G_{m}(s)r(s)$$
 (9)

其中, $\mathbf{r}(s)$ 为参考输入, $\mathbf{G}_{m}(s)$ 为参考模型. 并设

$$G_{\rm m}(s) = \frac{N_{\rm d}(s)}{T_{\rm d}(s)} \tag{10}$$

 $N_d(s)$ 和 $T_d(s)$ 分别是 m_d 阶和 n_d 阶多项式.

考虑具有如下结构的控制器:

$$\boldsymbol{u} = K_r(s)\boldsymbol{r} + K_v(s)\boldsymbol{y}_p \tag{11}$$

所谓精确模型匹配问题:对于给定的被控对象 P(s)和参考模型 $G_m(s)$,设计控制器式(11)使得由 r 到 y_p 的闭环传递函数 G_{y_p} 等于 $G_m(s)$,从而使得对于任意参考输入 r 的输出响应 y_p 等于 y_m . 文献[7]给出了 P(s)和 $G_m(s)$ 应满足:N(s)的根均位于 s 开左半平面内; $n_d - m_d \geqslant n - m$ 的精确模型匹配条件.

基于模型匹配的二自由度控制系统结构如图 2 所示. 由被控对象 P(s)、前馈和反馈控制器 $K_r(s)$ 和 $K_y(s)$ 组成. r(s)为输入指令, u(s)为控制量, e(s)为输出量的匹配误差.

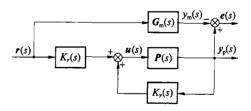


图 2 模型匹配两自由度控制系统

Fig. 2 Model matching two-degree-of-freedom control system

2.2 基于 H_{∞} 控制理论的精确模型匹配问题近似解

定义模型匹配误差为:

$$G_e(s) = G_m(s) - G_{y_r}(s)$$
 (12)

用误差函数 $G_{\epsilon}(s)$ 的 H_{∞} 范数评价模型匹配

的精度,设 $G_{\bullet}(s)$ 满足

$$\parallel \mathbf{G}_{\epsilon}(s) \parallel_{\infty} = \parallel \mathbf{G}_{m}(s) - \mathbf{G}_{y_{p}r}(s) \parallel_{\infty} < \epsilon$$
(13)

则 $\epsilon > 0$ 越小, $G_{y_pr}(s)$ 越逼近 $G_m(s)$. 对于同一参考输入 r, 被控对象的输出 y_p 将近似跟踪模型的输出 y_m . 工程上 ϵ 小于允许误差就认为实现了近似匹配. 利用这种控制器的设计自由度,可以进一步满足其它的诸如鲁棒稳定性等的要求.

令 $x = [x_p x_m]^T$ 且 $e = y_p - y_m$. 则 $G_e(s)$ 等于由 P(s), $G_m(s)$ 和控制器式(11)构成的闭环系统从 r 到 e 的传递函数. 对给定的允许误差 $\epsilon > 0$, 如果闭环系统内部稳定, 且

$$\parallel \mathbf{G}_{\varepsilon}(s) \parallel_{\infty} < \varepsilon \tag{14}$$

或等价地

$$\parallel \varepsilon^{-1} \mathbf{G}_{\varepsilon}(s) \parallel_{\infty} < 1 \tag{15}$$

则此时的控制器式(11)即为模型匹配问题的近似解. 而这样的控制器可以通过求式(15)所对应的 H_{∞} 标准设计问题的解得到.

2.3 模型匹配两自由度系统状态空间模型

轧机主传动系统模型匹配二自由度机电振动控制系统如图 3 所示, $K = [K, K_y]$ 为两自由度 H_{∞} 控制器.设计控制器时,为了使系统对常值或阶跃速度信号的跟踪误差渐近趋于零,引入一个积分环节[7],如图中虚线所示,即

$$\alpha(s) = \frac{1}{s} \tag{16}$$

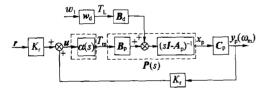


图 3 轧机主传动系统动态结构图

Fig. 3 Dynamic diagram of the rolling mill main drive system

由于引入的积分环节 $\alpha(s)$ 使增广被控对象不满足标准 H_∞ 控制问题的可解条件,所以将其修改为

$$\alpha(s) = \frac{1}{s + \sigma} \tag{17}$$

σ为使式(16)与式(17)近似相等的一个小常数.

图 3 中 w_d 为加权函数,针对外扰问题来设计,为了达到抑制扰动和振荡的目的, $|w_d|^{-1}$ 选择为一个惯性环节^[6],即

$$w_d = \gamma_d \frac{(s + \omega_d)^2}{(s + 10^{-3})(s + 10^5)}$$
 (18)

如果 $\alpha(s)$, w_d 写成如下形式:

$$\boldsymbol{\alpha} = \begin{bmatrix} \boldsymbol{A}_{\alpha} & \boldsymbol{B}_{\alpha} \\ \boldsymbol{C}_{\alpha} & \boldsymbol{D}_{\alpha} \end{bmatrix}, \quad \boldsymbol{w}_{d} = \begin{bmatrix} \boldsymbol{A}_{wd} & \boldsymbol{B}_{wd} \\ \boldsymbol{C}_{wd} & \boldsymbol{D}_{wd} \end{bmatrix}.$$

设参考模型 $G_m(s)$ 的状态空间实现为:

$$\begin{cases} \dot{\boldsymbol{x}}_{\mathrm{m}} = \boldsymbol{A}_{\mathrm{m}} \boldsymbol{x}_{\mathrm{m}} + \boldsymbol{B}_{\mathrm{m}} \boldsymbol{r} \\ \boldsymbol{y}_{\mathrm{m}} = \boldsymbol{C}_{\mathrm{m}} \boldsymbol{x}_{\mathrm{m}} \end{cases} \tag{19}$$

则图 3 所示的 H。标准形式的状态方程写为:

$$\begin{bmatrix} \dot{x} \\ z \\ y \end{bmatrix} = G(s) \begin{bmatrix} x \\ w \\ u \end{bmatrix} = \begin{bmatrix} A & B_1 & B_2 \\ C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} x \\ w \\ u \end{bmatrix}$$
(20)

式中.

 $z = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix} e^{T} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix} v = \begin{bmatrix} y_p \\ v \end{bmatrix}^T, \quad y = \begin{bmatrix} y_p \\ v \end{bmatrix}^T, \quad e = y_p - y_m,$ δ 为一个小的正数.

对广义增广对象式(20), H_∞ 设计问题有解:

$$\parallel \mathbf{T}_{n\nu}(s) \parallel_{\infty} < 1 \tag{21}$$

则显然有:

$$\left\| \frac{1}{\varepsilon} \mathbf{G}_{e}(s) \right\|_{\infty} < 1 \tag{22}$$

3 H。控制器设计

轧机主传动系统机电振动控制器设计问题可以归结为标准的 H_{∞} 控制问题. 设增广被控对象为:

$$\dot{x} = Ax + B_1 w + B_2 u$$

$$z = C_1 x + D_{11} w + D_{12} u$$

$$y = C_2 x + D_{21} w + D_{22} u$$
(23)

其中, $x \in \mathbb{R}^n$ 是状态向量, $u \in \mathbb{R}^m$ 是控制输入, $y \in \mathbb{R}^p$ 是测量输出, $z \in \mathbb{R}^r$ 是被调输出, $w \in \mathbb{R}^q$ 为外部扰动.

假定:(1)(A, B_2 , C_2)是能稳能检测的;(2) $D_{22} = 0$.

控制器的状态空间实现为:

$$\begin{cases} \dot{\overline{x}} = A_k \overline{x} + B_k y \\ u = C_k \overline{x} + D_k y \end{cases}$$
 (24)

其中, \overline{x} 是控制器的状态, A_k , B_k , C_k , D_k 是待定的控制器参数矩阵.

对基于线性矩阵不等式的输出反馈 H_{∞} 控制器的存在条件和设计问题,有如下定理[8]:

系统式(23)存在一个输出反馈 γ 次优 H_{∞} 控制器, 当且仅当存在对称正定矩阵 X 和 Y, 使得

$$\begin{bmatrix} \mathbf{N}_{\circ} & 0 \\ 0 & \mathbf{I} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{X} + \mathbf{X} \mathbf{A} & \mathbf{X} \mathbf{B}_{1} & \mathbf{C}_{1}^{\mathrm{T}} \\ \mathbf{B}_{1}^{\mathrm{T}} \mathbf{X} & -\gamma \mathbf{I} & \mathbf{D}_{11}^{\mathrm{T}} \\ \mathbf{C}_{1} & \mathbf{D}_{11} & -\gamma \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{N}_{\circ} & 0 \\ 0 & \mathbf{I} \end{bmatrix} < 0$$
(25)

$$\begin{bmatrix} \mathbf{N}_{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{A}\mathbf{Y} + \mathbf{Y}\mathbf{A}^{T} & \mathbf{Y}\mathbf{C}_{1}^{T} & \mathbf{B}_{1} \\ \mathbf{C}_{1}\mathbf{Y} & -\gamma \mathbf{I} & \mathbf{D}_{11} \\ \mathbf{B}_{1}^{T} & \mathbf{D}_{11}^{T} & -\gamma \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{N}_{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} < \mathbf{0}$$

(26)

$$\begin{bmatrix} X & I \\ I & Y \end{bmatrix} \geqslant 0$$
 (27)

其中, N_0 和 N_c 分别是以子空间 $\ker([C_2 D_{21}])$ 和 $\ker([B_2^T D_{12}^T])$ 中任意一组基向量作为列向量所构成的矩阵.

输出反馈 γ 次优 H_∞ 控制器的设计步骤如下:

- (1) 求取满足式(25)~(27)的矩阵 X 和 Y:
- (2) 求取满足 $X Y^{-1} = X_2 X_2^T$ 的矩阵 X_2 , $X_2 \in \mathbb{R}^{n \times n_k}$, 其中的 n_k 可以选择为矩阵 $X Y^{-1}$ 的秩. 可以采用奇异值分解的的方法得到这样的矩阵 X_2 . 用矩阵 X 和 X_2 构造

$$\boldsymbol{X}_{\text{cl}} = \begin{bmatrix} \boldsymbol{X} & \boldsymbol{X}_{2}^{\text{T}} \\ \boldsymbol{X}_{2} & \boldsymbol{I} \end{bmatrix}$$
 (28)

(3) 将得到的矩阵 X。代入到矩阵不等式

$$\boldsymbol{H}_{\boldsymbol{X}_{d}} + \boldsymbol{P}_{\boldsymbol{X}_{d}}^{T} \boldsymbol{K} \boldsymbol{Q} + \boldsymbol{Q}^{T} \boldsymbol{K}^{T} \boldsymbol{P}_{\boldsymbol{X}_{d}} < 0 \qquad (29)$$

中,就会得到只包含矩阵变量 K 的一个线性矩阵不等式,从而应用求解线性矩阵不等式的工具可以求出 H_{∞} 控制器 K:

$$K = \begin{bmatrix} A_k & B_k \\ C_k & D_k \end{bmatrix} \tag{30}$$

其中, $Q = [\overline{C} \overline{D}_{21} 0]$,

$$P_{X_{cl}} = [\overline{\boldsymbol{B}}^{T} \boldsymbol{X}_{cl} \quad 0 \quad \overline{\boldsymbol{D}}_{12}^{T}],$$

$$\boldsymbol{H}_{\boldsymbol{X}_{cl}} = \begin{bmatrix} \boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{X}_{cl} + \boldsymbol{X}_{cl} \boldsymbol{A}_0 & \boldsymbol{X}_{cl} \boldsymbol{B}_0 & \boldsymbol{C}_0^{\mathrm{T}} \\ \boldsymbol{B}_0^{\mathrm{T}} \boldsymbol{X}_{cl} & -\boldsymbol{I} & \boldsymbol{D}_{11}^{\mathrm{T}} \\ \boldsymbol{C}_0 & \boldsymbol{D}_{11} & -\boldsymbol{I} \end{bmatrix},$$

$$\mathbf{A}_{0} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & 0 \end{bmatrix}, \ \mathbf{B}_{0} = \begin{bmatrix} \mathbf{B}_{1} \\ 0 \end{bmatrix}, \ \mathbf{C}_{0} = [\mathbf{C}_{1} \ 0],$$
$$\overline{\mathbf{B}} = \begin{bmatrix} 0 & \mathbf{B}_{2} \\ \mathbf{I} & 0 \end{bmatrix}, \ \overline{\mathbf{C}} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{C}_{2} & 0 \end{bmatrix},$$
$$\overline{\mathbf{D}}_{12} = [0 \ \mathbf{D}_{12}], \ \overline{\mathbf{D}}_{21} = \begin{bmatrix} 0 \\ \mathbf{D}_{21} \end{bmatrix}.$$

4 仿真研究

某厂 2 030 mm 带钢冷连轧机第 4 机架轧机 主传动系统参数如下^[9]:电动机的转动惯量 $J_m = 1552 \,\mathrm{kg \cdot m^2}$, 轧辊转动惯量 $J_L = 1542 \,\mathrm{kg \cdot m^2}$, 弹性轴刚度系数 $K_{\mathrm{sh}} = 5.93 \times 10^6 \,\mathrm{N \cdot m \cdot rad^{-1}}$.

选择参考模型为:

$$G_{\rm m}(s) = \frac{c_{\rm m}}{s^2 + a_{\rm m}s^2 + b_{\rm m}s + c_{\rm m}}$$
 (31)

式中, $a_m = 20$, $b_m = 320$, $c_m = 1400$.

在 $\alpha(s)$ 中, 取 $\alpha = 10^{-6}$, 抑制扰动和振荡的 加权函数 w_d 中, $\gamma_d = 65\,000$, $\omega_d = 40$.

当 $\omega = 0.04$, $\delta = 4 \times 10^{-8}$ 时, 利用上述方法可得 H_{∞} 控制器的传递函数由式(32), (33), (34) \sim (37)组成; 当 $\epsilon = 0.00001$, $\delta = 1 \times 10^{-11}$ 时, 可得 H_{∞} 控制器的传递函数由式(32), (33), (38) \sim (41)组成.

$$K_{y}(s) = \frac{K_{yn}(s)}{K_{yd}(s)}$$
 (32)

$$K_r(s) = \frac{K_{\rm m}(s)}{K_{\rm rd}(s)} \tag{33}$$

$$K_{yn}(s) = -23395457859.17(s+9.66\times10^{4})\times$$

$$(s+94.81)(s+67.14)(s+5.915)\times$$

$$(s+3.61)(s+1\times10^{-6})(s^{2}+14.09s+236.7)$$
(34)

$$K_{yd}(s) = (s+1.001 \times 10^{5})(s+3.342)(s+5.29)(s+5.914)(s+0.000.951) \times (s^{2}+14.09s+236.7)(s^{2}+141s+1.1\times 10^{4})$$
(35)

$$K_{\rm m}(s) = 224\,073\,725.575(s+52.41)(s+21.34)(s+1\times10^{-6})(s^2+20.39s+293)(s^2+90.26s+7819)$$
 (36)

$$K_{rd}(s) = (s+3342)(s+57.29)(s+5.914) \times (s+0.000951)(s^2+14.09s+236.7)(s^2+141s+1.1\times10^4)$$
 (37)

$$K_{yn}(s) = -12073632208.5(s+9.85\times10^4)(s+8.542)(s+6.174)(s+9.99\times10^{-7})(s^2+14.11s+235.9)\times$$

$$(s^{2}-22.82s+3595) \qquad (38)$$

$$K_{yd}(s) = (s+1\times10^{5})(s+5.279)(s+0.00068)(s^{2}+14.09s+234.9)(s^{2}+0.2394s+3841)(s^{2}+623.4s+1.197\times10^{5}) \qquad (39)$$

$$K_{m}(s) = 1115726.83(s+889.1)(s+125.6)(s+42.16)(s+16.16)(s+125.6)(s+42.16)(s+16.16)(s+125.6)(s^{2}+58.38s+6266) \qquad (40)$$

$$K_{rd}(s) = (s+5.279)(s+0.00068s)\times (s^{2}+14.09s+234.9)(s^{2}+0.2394s+3841)(s^{2}+623.4s+1.197\times10^{5}) \qquad (41)$$

速度给定为阶跃信号 $r=27.3~{\rm rad\cdot s^{-1}}$,负荷扰动 $T_{\rm L}=14\,500~{\rm N\cdot m}$ 在 $t=5~{\rm s}$ 时加入,当 $\epsilon=0.04$ 时,电机速度 $\omega_{\rm m}$ 的响应曲线如图 4 中曲线 3 所示,当 $\epsilon=0.000\,01$ 时,电机速度 $\omega_{\rm m}$ 的响应曲线如图 4 中曲线 2 所示。由图 4 可知,随着 ϵ 的减小,速度响应迅速逼近参考模型的输出响应,系统对速度具有良好的跟踪能力。为了便于比较,图 4 中同时给出了基于传统电流、转速双 PI 控制结果,如图 4 中曲线 1 所示。由图可见, H_{∞} 控制器明显改善了系统性能,减少了超调。

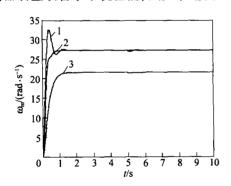


图 4 速度响应对比曲线

Fig. 4 Comparison of speed response

图 5 为突加负荷扰动 T_L 时系统动态速降局部放大曲线,其中曲线 2 为当 ε = 0.000 01, γ_d = 65 000 时,基于 LMI 方法的 H_∞ 控制器结果,曲线 1 为传统电流、转速双 PI 控制结果.由图可见,传统电流、转速双 PI 调节器在负荷扰动 T_L 阶跃变化时,电机转速 ω_m 产生振荡,同时恢复时间较长.而基于 LMI 方法的 H_∞ 控制器消除了机电扭振的影响,电机转速无振荡地快速恢复到原设定值.可见,本文所设计的控制器具有优良的抗扰动性能,适合轧机传动机电振动控制的要求.

为了考虑加权函数 w_d 对系统扰动和振荡的 抑制作用, 改变 γ_d , 重复上述实验. 当 γ_d = 65 000 时, 电机速度响应局部放大曲线如图 5 中曲线 2

所示,当 γ_d = 55 000 时,电机速度响应局部放大 曲线如图 5 中曲线 3 所示. 由图可见,通过调整 加权函数 w_d ,可以有效减小系统在突加负荷扰 动时的动态速降,增强系统对扰动的抑制能力.

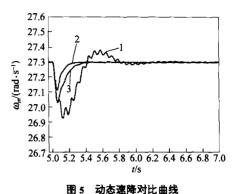


Fig. 5 Comparison of dynamic speed drop

5 结论

轧机主传动系统机电振动是一个多学科交叉的新领域,也是我国大型连轧机技术改造所面临的新课题.从机电动力学出发,描述了机电弹性系统模型,并以现代控制理论为基础,阐述了机电振荡产生的机理.为了抑制机电振动,保证对干扰有良好的动态抑制作用且无静态扰动误差,针对轧机主传动系统,建立了基于模型匹配二自由度系统的状态空间模型,并将速度控制器设计归结为标准的 H_∞ 控制问题;用线性矩阵不等式法得到输出反馈 H_∞ 控制器.该方法设计的轧机主传动控制系统有效改善了系统的跟踪性能,抑制了系统的机电振动现象,同时减小了轧制负荷扰动引起的动态速降.

参考文献

- [1] 王征,张卫,李崇坚. 大型热连轧机主传动系统机电振荡的研究. 冶金自动化,2001,25(1):30
- [2] Hori Y, Sawada H, Chun Y. Slow resonance ratio control for vibration suppression and disturbance rejection in torsional system. IEEE Trans Ind Electron, 1999, 46(1): 162
- [3] Song S H, Ji J K, Sul S K, et al. Torsional vibration suppression control in 2-mass system by state feedback speed controller // Proceedings of the 2nd IEEE Conference on Control Applications. Vancouver, 1993: 129
- [4] Hori Y, Iseki H, Sugiura K. Basic consideration of vibration suppression and disturbance rejection control of n-inertia system using SFLAC (state feedback and load acceleration control). IEEE Trans Ind Appl, 1994, 30(4): 889
- [5] Ji J K, Sul S K. Kalman filter and LQ based speed controller for torsional vibration suppression in a 2-mass motor drive system. IEEE Trans Ind Electron, 1995, 42(6): 564

- [6] Kim J S, Kim Y S, Shin J H, et al. H_∞ speed control of an induction motor with the two-mass resonant system by LMI// Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, 19981: 1439
- [7] 申铁龙. H。控制理论及应用. 北京:清华大学出版社,1996
- [8] 俞立. 鲁棒控制——线性矩阵不等式处理方法. 北京:清华大学出版社,2002
- [9] 邹家祥,徐乐江. 冷连轧机系统振动控制. 北京:冶金工业出版社,1998

 H_{∞} control based on LMI for electromechanical vibration of a rolling mill main drive system

ZHANG Ruicheng, TONG Chaonan, LI Boqun

Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China

ABSTRACT In order to suppress electromechanical vibration, to dynamically restrain the disturbance of a main drive system and not to induce static error by the disturbance, a state space model of two-degree-of-freedom systems was built based on model matching techniques for the main drive system of a rolling mill. The design of an electromechanical vibration controller was converted into a standard H_{∞} control problem. Then an output feedback H_{∞} controller was obtained by using LMI approach so as to guarantee the robustness of the main drive system of a rolling mill. Simulated results showed that the controller effectively improved the performance of command following, suppressed electromechanical vibration, and reduced the dynamic speed fall caused by load disturbance.

KEY WORDS rolling mill; electromechanical vibration; linear matrix inequality (LMI); model matching; controller