基于 KAUTZ 模型的预测函数控制及其稳定条件

许鸣珠 刘贺平 李晓理 王允建

北京科技大学信息工程学院,北京 100083

摘 要 对模型未知的系统采用 Kautz 函数 逼近得到系统的近似 模型.基于 所得到的 Kautz 模型设计了一种预测 函数控制器.对该算法进行了稳定性分析,依据 Lyapunov 稳定性定理得到了保证闭环控制系统稳定的充分条件.仿真实验证明,该算法能够准确逼近真实系统模型,实现自适应控制,得到满意的控制效果.

关键词 预测函数控制; Kautz 模型; 最小二乘辨识; Lyapunov 稳定性 分类号 TP 273. 2

预测函数控制(predictive functional control, PFC)^[1-2] 是在预测控制的基础上发展起来的一种 快速算法,以其算法简单、计算量小、跟踪快速准确 等特点吸引了众多研究者,成为研究的热点,目前, 多数 PFC 是利用参数模型作为预测模型,在设计控 制方案时需要预先知道被控对象的模型结构。然而 在实际应用中模型阶次和时延的辨识比较麻烦。针 对这个问题有许多学者进行了研究. 文献[3-4] 基 于神经网络研究了模型未知的情况. 文献 [5-8] 研 究了利用正交函数逼近来建立未知系统模型的方 法. 其中 Laguerre 模型 是单极点网络. 能够成功逼 近过阻尼系统,避免了辨识模型结构的麻烦,但是对 于欠阳尼系统或特性变化较大的情况逼近效果很 差. 拥有两个极点的 Kautz 滤波网络能够有效地克 服 Laguerre 模型的缺点,其辨识算法简单、适用范 围广、逼近精度高,本文提出了一种基于 Kautz 模 型的预测函数控制算法,并对系统进行了稳定性分 析.依据 Lyapunov 稳定性理论得到了闭环控制系统 稳定的充分条件. 仿真试验表明该算法对结构和参 数未知的系统能够准确辨识,实现了稳定控制.

1 Kautz 模型

Kautz函数是平方可积函数空间上的一组正交基,定义为:

$$\psi_{2n-1}(z, b, c) = \frac{\sqrt{1-c^2(z-b)z}}{z^2+b(c-1)z-c} \left[\frac{-cz^2+b(c-1)z+1}{z^2+b(c-1)z-c}\right]^{n-1}$$
(1)

$$\Psi_{n}(z, b, c) = \frac{\sqrt{(1-c^{2})(1-b^{2})}z}{z^{2}+b(c-1)z-c} \left[\frac{-cz^{2}+b(c-1)z+1}{z^{2}+b(c-1)z-c}\right]^{n-1}$$
(2)

其中, b和 c 是参数, 满足条件 |b| < 1和 |c| < 1,

$$c = -\xi \xi^*, \ b = \frac{\xi + \xi^*}{1 + \xi \xi^*}$$
 (3)

^{ξ} 是 Kautz 滤 波器的 极 点, 具 体 取 值 方 法 见 文 献[7], ^{ξ^*} 是它的共轭. 系统的传递函数 G(z) 可以 写成 Kautz 函数的线性组合形式:

$$G(z) = \sum_{i=1}^{\infty} g_i \Psi(z, b, c)$$
(4)

其中, g_i 是 Kautz 函数基的组合系数. 实际应用中 组合系数 g_i 取有限项 N, N 称为截断阶次, 取值跟 极点的选择有关, 具体方法见文献[8]. 则式(4)改 写为:

$$G(z) = \sum_{i=1}^{N} g_i \psi(z, b, c)$$
 (5)

实际系统的输入输出模型可以用图1所示的 Kautz 滤波网络来表示.

从图1第1支路得

$$x_{1}(k) = \frac{\sqrt{1-c^{2}(z-b)z}}{z^{2}+b(c-1)-c}u(k),$$

展开得:

$$x_{1}(k+1) = -b(c-1)x_{1}(k) + cx_{1}(k-1) + \sqrt{1-c^{2}}u(k+1) - b\sqrt{1-c^{2}}u(k).$$

同理,由第2支路得

$$x_1(k) \frac{\sqrt{1-b^2}}{z-b} = x_2(k),$$

收稿日期: 2006-08-09 修回日期: 2006-10-30

基金项目:北京市教委重点学科共建项目(No.00002268)

作者简介: 许鸣珠(1967-),女,高级工程师,博士

展开得.

图 1 Kautz 滤波网络结构图 Fig 1 Structure of Kautz filter networks

展开为.

$$\begin{split} x_{2}(k) &= \sqrt{1-b^{2}} x_{1}(k) + bx_{2}(k), \\ \mathbf{tafs 3 5B49} \\ x_{3}(k) &= \frac{-cz^{2} + b(c-1)z + 1}{z^{2} + b(c-1) - c} x_{1}(k), \\ \begin{cases} x_{1}(k+1) &= \alpha_{11} x_{1}(k) + \beta_{11} x_{1}(k-1) + \sqrt{1-c^{2}} (\sigma_{11} u(k-1) + \sigma_{12} u(k)) \\ x_{2}(k+1) &= \alpha_{21} x_{1}(k) + \alpha_{22} x_{2}(k) \\ x_{3}(k+1) &= \alpha_{31} x_{1}(k) + \alpha_{33} x_{3}(k) + \beta_{31} x_{1}(k-1) + \beta_{33} x_{3}(k-1) + \sqrt{1-c^{2}} (\sigma_{31} u(k-1) + \sigma_{32} u(k)) \\ x_{4}(k+1) &= \alpha_{41} x_{1}(k) + \alpha_{42} x_{2}(k) + \alpha_{44} x_{4}(k) + \beta_{42} x_{2}(k-1) + \beta_{44} x_{2}(k-1) \\ &\vdots \\ x_{1}(k+1) &= \alpha_{11} x_{1}(k) + \alpha_{43} x_{3}(k) + \dots + \alpha_{ii} x_{i}(k) + \beta_{i1} x_{1}(k-1) + \beta_{i3} x_{3}(k-1) + \dots + \beta_{ii} x_{i}(k-1) +$$

其中, 变量 *i* 的取值等于截断级数 *N*, 对于一般对象取 *N*=4~6 就可以满足要求; 参数 $\sigma_{i1} = (-c)^{\frac{i-1}{2}} \times (-b), \sigma_{i2} = (-c)^{\frac{i-1}{2}}; \alpha_{ii}$ 和 β_{ii} 的变化也是有规律的, 以 *N*=6 为例, 其定义如下:

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & \alpha_{15} & \alpha_{16} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} & \alpha_{25} & \alpha_{26} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} & \alpha_{35} & \alpha_{36} \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} & \alpha_{45} & \alpha_{46} \\ \alpha_{51} & \alpha_{52} & \alpha_{53} & \alpha_{54} & \alpha_{55} & \alpha_{56} \\ \alpha_{61} & \alpha_{62} & \alpha_{63} & \alpha_{64} & \alpha_{65} & \alpha_{66} \end{bmatrix} = \begin{bmatrix} -b(c-1) & & & & \\ \sqrt{1-b^2} & b & & & \\ b(c^2-1) & 0 & -b(c-1) & & \\ -c & \sqrt{1-b^2} & -b & 0 & -b(c-1) & & \\ -cb(c^2-1) & 0 & b(c^2-1) & 0 & -b(c-1) & & \\ c^2 & \sqrt{1-b^2} & cb & 0 & b(c^2-1) & 0 & -b(c-1) & \\ c^2 & \sqrt{1-b^2} & cb & 0 & b(c^2-1) & 0 & -b(c-1) & \\ c^2 & \sqrt{1-b^2} & cb & 0 & b(c^2-1) & 0 & -b(c-1) & \\ \beta_{21} & \beta_{22} & \beta_{23} & \beta_{24} & \beta_{25} & \beta_{26} \\ \beta_{31} & \beta_{32} & \beta_{33} & \beta_{34} & \beta_{35} & \beta_{36} \\ \beta_{41} & \beta_{42} & \beta_{43} & \beta_{44} & \beta_{45} & \beta_{46} \\ \beta_{51} & \beta_{52} & \beta_{53} & \beta_{54} & \beta_{55} & \beta_{56} \\ \beta_{61} & \beta_{62} & \beta_{63} & \beta_{64} & \beta_{65} & \beta_{66} \end{bmatrix} = \begin{bmatrix} c & & & & \\ 0 & 0 & & & \\ 1-c^2 & 0 & c & & \\ 0 & 1 & 0 & c & & \\ -c(1-c^2) & 0 & 1-c^2 & 0 & c \\ 0 & -c & 0 & 1-c^2 & 0 & c \end{bmatrix}$$

(6)

结合图 1和式(6)可以得到系统模型的状态空间方程:

$$\begin{cases} \boldsymbol{X}(k+1) = \boldsymbol{A}_1 \, \boldsymbol{X}(k) + \boldsymbol{A}_2 \boldsymbol{X}(k-1) + \boldsymbol{B} \boldsymbol{U}(k) \\ \boldsymbol{y}(k+1) = \boldsymbol{C} \boldsymbol{X}(k+1) \end{cases}$$
(7)

式中,
$$X(k)$$
、 $X(k-1)$ 、 $U(k)$ 和 C 的表达式如下:
 $X(k) = [x_1(k) \quad x_2(k) \quad \cdots \quad x_N(k)]^{\mathrm{T}},$
 $X(k-1) = [x_1(k-1) \quad x_2(k-1) \quad \cdots \quad x_N(k-1)]^{\mathrm{T}},$
 $U(k) = [u(k-1) \quad u(k)]^{\mathrm{T}},$
 $C = [g_1 \quad g_2 \quad \cdots \quad g_j \quad \cdots \quad g_N].$

其中 A_1 和 A_2 是 $N \times N$ 下三角矩阵, $B \in N \times 2$ 矩阵, 具体形式如下所示:

$$A_{1} = \begin{bmatrix} \alpha_{11} & 0 & \cdots & 0 \\ \alpha_{21} & \alpha_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{N1} & \alpha_{N2} & \cdots & \alpha_{NN} \end{bmatrix},$$
$$A_{2} = \begin{bmatrix} \beta_{11} & 0 & \cdots & 0 \\ \beta_{21} & \beta_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{N1} & \beta_{N2} & \cdots & \beta_{NN} \end{bmatrix},$$
$$B = \sqrt{1 - c^{2}} \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \\ \vdots & \vdots \\ \sigma_{N1} & \sigma_{N2} \end{bmatrix} = \begin{bmatrix} B_{1} & B_{2} \end{bmatrix}.$$

由式(7)可知, 当极点⁵ 和截断阶次 *N* 确定以 后, 所表征对象的变化可以通过 Kautz 模型的系数 向量 *C* 的变化来反映, 由于 *X*(*k*+1)可以由式(7) 通过 *U*(*k*)计算得到, 则系数 *C* 可以方便地应用式 (8)的最小二乘辨识算法在线获得.

$$\begin{cases} \mathbf{C}(k) = \mathbf{C}(k-1) + \\ \left\{ \frac{\mathbf{P}(k-1) \mathbf{X}(k) [\mathbf{y}(k) - \mathbf{C}(k) \mathbf{X}(k)]}{\gamma + \mathbf{X}^{\mathrm{T}}(k) \mathbf{P}(k-1) \mathbf{X}(k)} \right\}^{\mathrm{T}} \\ \mathbf{P}(k) = \frac{1}{\gamma} \left[\mathbf{P}(k-1) - \\ \frac{\mathbf{P}(k-1) \mathbf{X}(k) \mathbf{X}^{\mathrm{T}}(k) \mathbf{P}(k-1)}{\gamma + \mathbf{K}^{\mathrm{T}}(k) \mathbf{P}(k-1) \mathbf{X}(k)} \right] \end{cases}$$
(8)

其中, γ为遗忘因子.

2 基于 Kautz 模型的预测函数控制

预测函数控制的特点在于将输入结构化, 认为 每一时刻的控制输入 *u* 是事先选定的基函数 *u*_{bj} 的 线性组合, 即:

$$u(k+i) = \sum_{j=1}^{n_{\rm b}} \mu_j(k) u_{\rm bj}(i)$$
 (9)

式中, *u*_{bj}(*i*)是基函数在第*k*+*i* 采样周期的取值, *n*_b 是基函数个数, *u*_j(*k*)是对应基函数的线性加权 系数. PFC 中基函数的选择依赖于设定值和对象本 身的性质, 通常可取为阶跃、斜坡、指数函数等. 对 于一般对象取两个基函数, 阶跃及斜坡函数来构造 控制量均能满足要求. 本文中控制量取为如下 形式:

$$u(k+i) = \mu_1(k) + i\mu_2(k) \tag{10}$$

利用线性状态反馈预测理论,可以从式(7)和 (10)得出未来 *k*+*i* 时刻的系统模型预测输出:

$$y_{\mathrm{m}}(k+i) =$$

$$CQ_{i}X(k) + C\overline{Q}_{i}X(k-1) + CQ_{0ui}u(k-1) +$$

$$C\sum_{j=1}^{i} Q_{jui}\mu_{1}(k) + C\sum_{j=2}^{i} (j-1) Q_{jui}\mu_{2}(k)$$
(11)

其中: $Q_1 = A_1$, $Q_2 = A_1Q_1 + A_2$, $Q_3 = A_1Q_2 + A_2Q_1$, …, $Q_i = A_1Q_{i-1} + A_2Q_{i-2}$; $\overline{Q_1} = A_2$, $\overline{Q_2} = A_1\overline{Q_1}$, $\overline{Q_3} = A_1\overline{Q_2} + A_2\overline{Q_1}$, …, $\overline{Q_i} = A_1\overline{Q_{i-1}} + A_2\overline{Q_{i-2}}$; 如果 j = i, 则 $Q_{jui} = B_2$; 如果 j = i-1, 则 $Q_{jui} = A_1Q_{ju(i-1)} + B_1$; 如果 j < i-1, $Q_{jui} = A_1Q_{ju(i-1)} + A_2Q_{ju(i-2)}$.

PFC 是一种闭环控制算法, 在实际情况下由于 二次噪声、系统时变等原因而引起模型预测输出与 对象输出之间存在一定的预测误差. 将预测误差通 过一个预估器, 对未来优化时域中的误差加以补偿, 可以提高控制精度, 取未来预测误差为:

$$e(k+i) = y(k) - y_{\rm m}(k)$$
 (12)

式中, y(k)和 $y_m(k)$ 为 k 时刻的系统输出与模型 输出.

控制系统的参考轨迹取值如下:

 $y_{r}(k+i) = \alpha^{i} y(k) + (1-\alpha^{i}) w(k)$ (13) 式中, $\alpha = \exp(-T_{s}/T_{r}), T_{s}$ 是采样周期, T_{r} 是闭 环系统期望响应时间, w(k) 是设定值.

本文采用下面的二次型性能指标计算控制量 u(k):

$$J = \sum_{i=H_1}^{H_2} [y_m(k+i) + e(k+i) - y_r(k+i)]^2 + \sum_{i=H_1}^{H_2} \lambda_i [u(k+i-1)]^2$$
(14)

式中, $[H_1, H_2]$ 是优化时域, λ_i 是控制量的加权 系数.

为了从式(14) 得到未知参数 $\mu_1(k)$ 和 $\mu_2(k)$, 只需要两个优化点 H_1 和 H_2 ,则式(14)改写为: $J = [y_m(k+H_1) + e(k+H_1) - y_r(k+H_1)]^2 + [y_m(k+H_2) + e(k+H_2) - y_r(k+H_2)]^2 + \lambda_H [\mu_1(k) + (H_1-1)\mu_2(k)]^2 + \lambda_H [\mu_1(k) + (H_1-1)\mu_2(k) + (H_1-1)\mu$

$$\lambda_{H} \left[\mu_{1}(k) + (H_{2}-1) \mu_{2}(k) \right]^{2}$$
 (15)

将式(11)、(12)和(13)分别带入式(15)可得:

$$J = [L_{1}(k) + M_{11} \mu_{1}() + M_{12} \mu_{2}(k)]^{2} + [L_{2}(k) + M_{21} \mu_{1}(k) + M_{22} \mu_{2}(k)]^{2} + \lambda_{H_{1}}[\mu_{1}(k) + (H_{1}-1) \mu_{2}(k)]^{2} + \lambda_{H_{2}}[\mu_{1}(k) + (H_{2}-1) \mu_{2}(k)]^{2}$$
(16)

式中.

$$L_{1}(y) = y_{m}H_{1} + e(k+H_{1}) - y_{r}(k+H_{1}),$$

$$y_{m}H_{1} =$$

$$CQ_{H_{1}}X(k) + C\overline{Q}_{H_{1}}X(k-1) + CQ_{0uH_{1}}u(k-1),$$

$$L_{2}(k) = y_{m}H_{2} + e(k+H_{2}) - y_{r}(k+H_{2}),$$

$$y_{m}H_{2} =$$

$$CQ_{H_{2}}X(k) + C\overline{Q}_{H_{2}}X(k-1) + CQ_{0uH_{2}}u(k-1),$$

$$M_{11} = C\sum_{j=1}^{H_{1}}Q_{juH_{1}}, M_{12} = C\sum_{j=2}^{H_{1}}(j-1)Q_{juH_{1}},$$

$$M_{21} = C\sum_{j=1}^{H_{2}}Q_{juH_{2}}, M_{22} = C\sum_{j=2}^{H_{2}}(j-1)Q_{juH_{2}}.$$

$$\Rightarrow \qquad \frac{\partial J}{\partial \mu_{1}(k)} = 0, \ \frac{\partial J}{\partial \mu_{2}(k)} = 0,$$

可求得:

$$\mu_{1}(k) = S_{x}X(k) + S_{x-1}X(k-1) + S_{y}y(k) + S_{w}w(k) + S_{0}u(k-1)$$
(17)

式中:

$$S_{x} = V_{1}(Q_{H_{1}} - C) + V_{2}(Q_{H_{2}} - C),$$

$$S_{x-1} = V_{1}\overline{Q}_{H_{1}} + V_{2}\overline{Q}_{H_{2}},$$

$$S_{0} = V_{1}Q_{0uH_{1}} + V_{2}Q_{0uH_{2}},$$

$$S_{y} = V_{1}(1 - \alpha^{H_{1}}) + V_{2}(1 - \alpha^{H_{2}}),$$

$$S_{w} = V_{1}\alpha^{H_{1}} + V_{2}\alpha^{H_{2}}, V_{1} = R(R_{2}M_{21} - R_{3}M_{11}),$$

$$V_{2} = R(R_{2}M_{22} - R_{3}M_{12}),$$

$$R_{1} = M_{11}^{2} + M_{12}^{2} + \lambda_{H_{1}} + \lambda_{H_{2}},$$

$$R_{2} = M_{11}M_{21} + M_{12}M_{22} + \lambda_{H_{1}}(H_{1} - 1) + \lambda_{H_{2}}(H_{2} - 1),$$

$$R_{3} = M_{21}^{2} + M_{22}^{2} + \lambda_{H_{1}}(H_{1} - 1) + \lambda_{H_{2}}(H_{2} - 1),$$

$$R = 1/(R_{1}R_{3} - R_{2}).$$

则当前控制量:

$$u(k) = \mu_1(k)$$
 (18)

从式(17)知,加权系数 $\mu_1(k)$ 存在的条件是 *R* 存在,因此在选择控制器参数 H_1, H_2, λ_{H_1} 和 λ_{H_2} 时 应保证此条件满足.实际中使得 $R = 1/(R_1R_3 - R_2)$ 存在,即 $R_1R_3 - R_2 \neq 0$ 的条件很容易满足,只 要在控制器调节时选择合适的参数即可.

3 稳定性分析

假设 Kautz 模型能够准确逼近真实模型,利用 公式(18)和系统状态方程(7)可得控制系统的闭环 状态空间方程如下:

$$\boldsymbol{X}(k+1) = \boldsymbol{A}_{f}\boldsymbol{X}(k) + \boldsymbol{A}_{s}\boldsymbol{X}(k-1) + \boldsymbol{B}_{2}\boldsymbol{S}_{w}\boldsymbol{w}(k) + \boldsymbol{B}_{0}\boldsymbol{u}(k-1)$$
(19)

式中, $A_f = A_1 + B_2 S_x + C B_2 S_y$, $A_s = A_2 + B_2 S_{x-1}$, $B_0 = B_1 + B_2 S_0$. 由公式(7)、(18)和(19)得:

$$u(k) = (S_{x} + S_{y}C)X(k) + S_{x-1}X(k-1) + S_{w}w(k) + S_{0}u(k-1)$$
(20)

定理1 设矩阵

$$M = \begin{bmatrix} A_{\mathrm{f}} & A_{\mathrm{s}} & B_{\mathrm{0}} \\ I & 0 & 0 \\ S_{x} + S_{y}C & S_{x-1} & S_{\mathrm{0}} \end{bmatrix}$$

如果满足条件 $|\lambda_i(M)| < 1$,则闭环控制系统稳定.

证明:由于设定值的引入不会影响所设计控制 系统的稳定性,所以在分析闭环控制系统稳定之前 令 w(k)=0,此时式(19)和(20)变为:

$$\boldsymbol{X}(k+1) = \boldsymbol{A}_{\mathrm{f}}\boldsymbol{X}(k) + \boldsymbol{A}_{\mathrm{s}}\boldsymbol{X}(k-1) + \boldsymbol{B}_{\mathrm{0}}\boldsymbol{u}(k-1)$$

(21)

$$u(k) = (S_{x} + S_{y}C)X(k) + S_{x-1}X(k-1) + S_{0}u(k-1)$$
(22)

将式(21)和(22)写成增广矩阵形式:

$$\begin{bmatrix} \mathbf{X}(k+1) \\ \mathbf{X}(k) \\ u(k) \end{bmatrix} =$$

$$\begin{bmatrix} \mathbf{A}_{\mathrm{f}} & \mathbf{A}_{\mathrm{s}} & \mathbf{B}_{0} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{x} + \mathbf{S}_{y}\mathbf{C} & \mathbf{S}_{x-1} & \mathbf{S}_{0} \end{bmatrix} \begin{bmatrix} \mathbf{X}(k) \\ \mathbf{X}(k-1) \\ u(k-1) \end{bmatrix}$$
(23)

简记为:

$$\boldsymbol{Z}(k+1) = \boldsymbol{M}\boldsymbol{Z}(k) \tag{24}$$

依据 Lyapunov 稳定性定理得到闭环系统稳定条件: | λ_i(**M**)|<1 (25)

定理1证毕.

4 仿真

为了验证算法的有效性进行了大量的仿真实

验. 本文所提算法在被控对象模型结构和参数未知 的情况下,能够准确逼近真实系统模型,实现自适应 控制得到满意的控制效果.给出例子如下.

控制对象为离散系统. 例

仿真中 Kautz 模型截断级数 N=4 滤波器极点 $\xi=0.16\pm0.52i$, 控制器参数取 $H_1=4, H_2=8,$ 遗 忘因子, $\gamma = 0.99$, 参考输入值取 1, 控制量加权系数 取 16 和 160, 利用控制对象 G(z)产生的数据, 用本 文算法在线辨识,实现自适应控制,

图 2 是使用正弦输入信号离线测试模型辨识误 差.在辩识初期由于数据不准确造成误差稍大.当

图 2 Kautz 模型逼近. (a) 跟踪曲线; (b) 误差曲线 Fig. 2 Kautz model and real system: (a) tracking curve; (b) error curve

系统稳定后辨识误差非常小,可以准确逼近真实系 统. 图 3 是参考输入为阶跃信号时的仿真图形. 由 于本文选择 Kautz 模型的截断级数 N=4, 图 3(b) 中的参数辨识曲线为四条. 图 4 是参考输入为方波 信号时的仿真图形. 从图 3 和图 4 中可以看出. 本

图3

文方法在输入为阶跃和方波信号时,系统都能够实 现稳定控制.本文算法能够进行在线辨识.通过参 数的变化来跟随状态变化.由式(7)可知,当控制输 入信号发生变化时、参数向量 C 随之发生变化、从 而降低了控制系统的输出超调量,提高了控制品质.

Fig. 3 Control output of step response: (a) control output; (b) parameter identification curve

控制系统阶跃响应曲线. (a) 控制输出; (b) 参数辨识曲线

图 4 控制系统方波响应曲线. (a) 控制输出; (b) 参数辨识曲线 Fig. 4 Control output of square wave; (a) control output; (b) parameter identification curve

5 结论

本文提出的基于 Kautz 模型的自适应预测函数 控制算法,在实现控制方案时,不需要事先知道系统 的时延和阶次,需要辨识的参数少,比神经网络模型 容易实现,能够根据系统数据准确辨识模型、调整控 制规律实现自适应控制,在线计算量小、跟踪速度 较快.

参考文献

- Richalet J, Abu El Ata-Doss S, Arber C. Predictive functional control: application to fast and accurate robots // Proceedings of 10th IFAC World Congress. M unich, 1987: 251
- [2] Kuntze H B, Jacubasch A, Hirsch U, On the application of a new method for fast and robust //1988 IEEE International Conference on Robotics and Automation. Scottsdale, 1988: 1574

[3] 张泉灵, 王树青. 基于神经网络模型的非线性预测函数控制.

信息与控制,2001,18(2):497

- [4] 刘贺平,张兰玲,孙一康.基于多层局部回归神经网络的多变量非线性系统预测控制.控制理论与应用,2001,18(2):298
- [5] Christos C, Zerovos, Dumout G A. Deterministic adaptive control based on Laguerre series representation. Int J Control, 1988, 48 (6): 2333
- [6] Wahlberg B. System identification using Kautz models. IEEE Trans Autom Control, 1994, 39(6): 1276
- [7] Morvan R, Tanguy N, Vilbe P. Pertinent parameters for Kautz approximation. Electron Lett, 2000, 36(8): 769
- [8] Tanguy N, Morvan R, Vilbe P. Pertinent choice of parameters for discrete Kautz approximation. IEEE Trans Autom Control, 2002, 47(5): 783
- [9] 许鸣珠,刘贺平.基于 Kautz 模型的预测控制仿真研究.系统 仿真学报,2007,19(15):3841
- [10] Mbarek A, Messaoud H, Favir G. Roubust predictive control using Kautz model//Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems. Sharjah, 2003: 184

Stability condition of predictive functional control based on Kautz model

XU Mingzhu, LIU Heping, LI Xiaoli, WANG Yunjian

Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China

ABSTRACT The orthogonal Kautz function was used to obtain the approximate model of a system. An adaptive predictive functional control algorithm using the Kautz model was designed. The stability of the algorithm was analyzed, and the sufficient condition to make a closed-loop system stable was presented based on the Lyapunov stability theory. Simulation results show that the proposed algorithm is effective, which can describe the system exactly and reach a high degree of control performance.

KEY WORDS predictive functional control; Kautz model; RLS; Lyapunov stability