有外来扩散源条件下 DD402 单晶合金中的 γ′相筏 形化

闫来 d^{1} ^{1) \boxtimes} 孙家华²⁾ 燕 平²⁾ 赵京晨²⁾

1) 安泰科技股份有限公司,北京 100081 2) 钢铁研究总院高温材料研究所,北京 100081
 ☑ 通信作者, E-mail: yanlaicheng@ atmcn. com

摘 要 研究了热等静压(HIP) 连接 DD402 单晶合金与 FGH95 粉末合金的扩散偶中,DD402 单晶合金的 γ′相筏形化过程. 提出了一种新的 γ′相筏形化的机理,分析了 γ′相筏形化的驱动力问题,建立了 γ′相筏形化过程的物理模型. 讨论了筏形 γ′片 层厚度与原始 γ′相的尺寸、体积分数以及 γ′相形成元素的扩散流量之间的关系. 结果表明,单晶合金的 γ′筏形化是由于其形 成元素的扩散使 γ′定向长大. 筏形化的过程包括两个阶段:一是 γ′粒子的定向连接阶段;二是筏形 γ′片层的平坦化. 筏形化 γ′的初始片层厚度及筏形化方向主要由 γ′原始尺寸及晶体取向决定.

关键词 单晶合金; 高温合金; 筏形化; 扩散; 热等静压 分类号 TG111.5

γ' phase rafting in single crystal DD402 superalloy under element diffusion from outer sources

YAN Lai-cheng¹⁾ \boxtimes , SUN Jia-hua²⁾ , YAN Ping²⁾ , ZHAO Jing-chen²⁾

1) Advanced Technology & Materials Co. Ltd., Beijing 100081, China

2) High Temperature Materials Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China

🖂 Corresponding author , E-mail: yanlaicheng@atmcn.com

ABSTRACT The rafting procedure of γ' phase in single crystal DD402 for DD402/FGH95 diffusion couples bonded by hot isostatic pressing (HIP) was studied. A new rafting mechanism of γ' phase was suggested. The driving force of rafting γ' phase was analyzed and a physical model of the rafting procedure of γ' phase was constructed. The relations of the width of rafted γ' phase pieces with the original size , volume fraction and constitutional element diffusion flux of γ' phase were discussed in details. The results show that the rafted reason of γ' phase in the single crystal is the continuous directional growth of γ' phase driven by diffusion of its constitutional elements. The rafted process includes two stages , one is the directional connect of γ' particles , and the other is the plainness process of γ' pieces. The width and direction of rafted γ' pieces were closely related to the original size and crystal orientation of γ' phase.

KEY WORDS single crystals; superalloys; rafting; diffusion; hot isostatic pressing

采用热等静压(hot isostatic pressing ,HIP) 扩散 连接涡轮叶片和涡轮盘的技术 ,制造航空航天用小 型发动机涡轮转子已经得到广泛应用. 其中 ,扩散 连接镍基单晶叶片和粉末涡轮盘时 ,在结合界面区 的单晶合金中 γ′相出现了筏形化 ,这将直接影响结 合界面的蠕变强度 ,而且这一现象与传统 γ′相筏形 化条件和结果完全不同. 单晶合金中 γ′相筏形化的 本质是其形成元素发生了定向扩散,为了论述方便, 可以将γí相筏形化条件分为无外来扩散源和有外 来扩散源两类.目前,在单向应力状态下的蠕变过 程中,单晶合金中的γí相筏形化属于无外来扩散源 类 相关的形成机理已有大量的研究^[1-3],认为γí相 与γ基体的错配度和弹性模量差是造成γí相筏形 化的内因,其特点是在弹性驱动力的作用下,依靠消 耗 γ´相自身的形成元素,在内部形成元素的定向扩 散,从而实现 γ´相的筏形化^[4].一些作者还全面讨 论了 γ´相的晶体取向与受力状态对 γ´相筏形化的 影响^[5-9].在 HIP 扩散连接的 DD402/FGH95 扩散 偶中,单晶合金中 γ´相筏形化是一种有外来扩散源 的筏形化过程^[10],其特点是在结合界面处由于 γ´相 形成元素的互扩散,局部区域的化学成分发生了明 显变化,从而使该区域中 DD402 单晶中的 γ´相出现 了筏形化.然而,对于这类 γ´相筏形化过程中,元素 定向扩散的驱动力、扩散途径以及 γ´相筏形化的影 响因素等方面的研究至今很少报道.因此深入揭示 这类有外来扩散源条件下的单晶合金 γ´相筏形化 HIP 扩散连接工艺有重要意义.

1 实验材料及方法

DD402 单晶合金的化学成分(质量分数)为: Al,5.33%; Cr,7.39%; Co,4.76%; Mo,0.64%; Ta,5.87%; Ti,1.06%; W,7.76%; Ni,余量. FGH95 粉末合金的化学成分(质量分数)为: Al, 3.5%; Cr,12.96%; Co,8.17%; Mo,3.34%; Ti, 2.26%; W,3.38%; Nb,3.32%, C,0.06%; Ni, 余量. DD402 单晶合金采用螺旋选晶法定向凝固精 铸而成,单晶取向偏离 [001]不超过 7°. 所有单晶 合金需进行预固溶处理(1 315 ℃,3 h,空冷 (AC)).将两种合金的待连接面净化处理后,封装 在真空度为 10⁻³ Pa 的包套中并热等静压,获得双 合金 DD402/FGH95 扩散偶.

热等静压设备为北京有色金属研究院的 ASEA 型热等静压机,热等静压温度、压力和时间分别为 1166 ℃、103 MPa 和 3 h,采用 S250MK3 型和TSM-6400 型扫描电镜进行结合界面区的组织观察和成 分测定.

2 实验结果

图 1 为热等静压后结合界面的组织和 DD402 单晶一侧中筏形 γ / 相形貌. DD402 单晶中在(100) 面和(010) 面上 γ / 相均出现明显的筏状,在(001) 面 上可以看到片状的 γ / 相. 由此可见,HIP 过程中,单 晶合金中的 γ / 粒子同时沿 [100] 和 [010] 两个方向 的二维定向长大,致使沿这两个方向上的 γ / 粒子相 互连接,形成片状 γ / 相(筏形化). 在结合界面区的 组织中,DD402 一侧的 γ / 筏形化区宽度为 15 ~ 20 μ m. 另外,在 DD402 与 FGH95 间形成了一个再结 晶区,并向 DD402 一侧生长.

图 1 热等静压后结合界面的组织结构(a) 与筏形 γ 相形貌(b) Fig. 1 Structure of bonding interface (a) and rafted γ phase morphology (b) after HIP

图 2 示出扩散偶中结合界面处 γ 相形成元素 的分布规律. 左侧是 DD402 单晶,右侧是 FGH95 合 金. 图 2 中横坐标中的 0 点是出现筏形 γ 相的位 置 0 点右侧 5 ~ 8 μ m 处是原始结合界面. 在 DD402 单晶侧的筏形 γ 区出现了元素 Al、Ti 和 Ta 的富集, 其宽度约为 20 μ m^[10]. 这是因为 HIP 扩散过程是多 组分的物系在恒温恒压条件下的互扩散过程,根据 吉布斯函数理论,由于扩散过程中元素的互作用和 体积分数的变化,其中的 Al、Ta 原子的化学位发生 了改变,形成了与成分梯度反向的化学位梯度,并驱 动元素 Al、Ta 发生沿浓度梯度方向的上坡扩散,即 Al、Ta 由 0 点右侧的再结晶区向 DD402 内侧高浓度 方向扩散;而元素 Ti 是在成分梯度的作用下由 FGH95 侧向 DD402 侧扩散,最后形成了元素 Al、Ti 和 Ta 的局部富集区.

综上所述,HIP 扩散连接过程中,结合界面处首 先发生塑性变形,使结合界面充分接触,以利于元素 互扩散并形成金属键,最终使界面冶金结合.在 HIP 扩散连接的 DD402/FGH95 扩散偶中,结合界面 处出现了一个多组分的物系扩散区,并形成了 γ΄相 筏形化区和再结晶区组成的过渡区,如图 3 所示. 其中,γ′相筏形化区(d₂区)宽度与其形成元素的富

集区的位置和宽度基本一致. 再结晶区(d_1 区)的组 织与 FGH95 类似,这是因为在 HIP 时,作用于界面 处塑性变形的功是内耗功,而且部分转化为热量,使 局部升温,剩余部分以不同的结构形式(如位错、弹 性应变等)储存下来^[11].所以,界面区的温度将超 过1165 °C(即 FGH95 合金的 γ 相溶解温度),使界 面处 FGH95 合金的组织由粗大的枝晶变为完全的 再结晶组织. 同时,由于元素的互扩散,再结晶晶粒 明显长大,其中的γ^{*}粒子向 DD402 侧定向生长^[12], 即原始结合界面向 DD402 侧推移(图4).

I —结合界面位置, 左侧是 d₁ 区("田"字型 γ ′区), 右侧是 d_{FGH95}区; II —d₁ 図 "田"字型 γ ′区)与 d₂ 区(筏形化 γ ′区) 的交 界位置; III—d₂ 区(筏形化 γ ′区) 结束的位置 左侧是 d_{FGH95}区. 图 3 热等静压后 DD402/FGH95 结合界面组织结构与元素互扩 散区

Fig. 3 Section structure and counter-diffusion of elements in the bonding DD402/FGH95 couple after HIP

图 4 热等静压后结合界面与定向生长的 γ 相. (a) FGH95 合金侧定向生长的 γ 相; (b) 原始结合界面迁移 Fig. 4 Interface and directional growth γ phase in the bonding couple after HIP: (a) directional growth γ phase in the FGH95; (b) movement of the primary interface

3 分析与讨论

3.1 γ[′]相筏形化的驱动力

γ[·]相筏形化的本质是γ[·]相形成元素的定向扩 散.一般地,元素定向扩散的驱动力有化学位梯度、 成分梯度和应力梯度等.

实验结果中 根据能谱分析仪测定结果表明 γ[′] 相筏形区呈现出元素 Al、Ti 和 Ta 的局部富集. 上述 分析认为 这是元素化学位梯度和浓度梯度共同作 用的结果. 然而 ,现有关于 γ[′]相筏形化的理论普遍 认为: γ[′]相与 γ 基体的错配度和弹性模量差是造成 γ[′]相筏形化的内在驱动力 ,对于负错配度镍基单晶 高温合金 ,在拉应力条件下 γ[′]相筏形化方向与应力 轴垂直(即 N-型筏状结构);在压应力条件下 γ[′]相 筏形化方向与应力轴平行(即 P-型筏状结构). 但 是,本实验的结合界面在 HIP 过程中将产生塑性变 形,并沿垂直结合界面方向形成一定范围的压应力 梯度场. 如果按目前的理论,应该形成垂直于结合 界面的筏形 γ[′]相(即 P-型筏状结构),但实际结果 相反. 另外,为了进一步研究结合界面应力梯度场 是否是导致 γ[′]相筏形化的因素,采用了 DD402/ DD402 扩散偶,经 1 166 ℃ / 103 MPa/3 h 热等静压 后,结合界面未出现 γ[′]相筏形化,仅是 γ[′]相呈现球 化特征(图 5). 分析认为:由于热等静压压力属各 向同性,不会导致 γ 基体和 γ[′]沉淀相中弹性应变能 的各向异性;而在结合界面区的压应力梯度场所产 生的应变能,未能使 γ[′]相的形成元素定向迁移并筏 形化,仅促使界面区的立方 γ[′]相发生了球化.

图 5 应力梯度对 HIP 后 DD402 / DD402 扩散偶中的 γ[′]相形貌的 影响

Fig. 5 Effects of strain gradient on the morphology of γ' phase in the DD402/DD402 diffusion couple after HIP

综上分析,在热等静压扩散连接的DD402/

FGH95 扩散偶中,导致 DD402 合金中 y⁻相筏形化的 元素扩散驱动力主要是化学位梯度和成分梯度. 但 是,结合界面的塑性变形产生的应变能除转换成热 能外,还将以位错等缺陷形式存在,为元素提供了快 速扩散通道,即界面区的应力梯度加速了 y⁻相形成 元素的扩散.

3.2 γ′相筏形化的过程及其物理模型

3.2.1 筏形化过程中 γ[′]/γ 界面处的成分分布

γ′相粒子的筏形化过程,即是固溶体中 γ′相的 定向长大的过程,所以需要了解 γ′/γ 界面的 γ′相形 成元素的变化规律,具体见图 6.

DD402 单晶的 γ 相成核后在固溶体中(成分为 C_0) 长大的过程中 其形成元素 Al、Ta 和 Ti 等在 γ //

图 6 γ' 相定向长大时 γ'/γ 界面处 γ' 相形成元素的分布. (a) 自扩散长大; (b) 自扩散长大结束; (c) 有外来扩散源的扩散长大; (d) 有 外来扩散源的扩散长大结束

Fig. 6 Element distribution of γ' particles on the γ'/γ boundary during the directional growth: (a) growth with self-diffusion; (b) end of self-diffusion growth; (c) growth with diffusion from the outer diffusion source; (d) end of growth with the outer diffusion source

 γ 界面处的分布如图 6(a) 所示,其中 γ '相中的元素 浓度(C_{γ})高; γ 基体中 Al、Ta 和 Ti 的浓度为 C_0 . 当 γ 基体中析出了 γ '相后,其 γ'/γ 界面处 Al、Ta 和 Ti 元素浓度(C_{γ})降低.为维持 γ '相的不断长大,原子 必须从远离 γ '相的固溶体中向 γ'/γ 界面扩散.这 样 γ '相不断长大, γ'/γ 界面不断向前推移,相邻 γ' 粒子的间距也不断缩小.当原子难以扩散到 γ'/γ 界面时, γ '相的长大也随之结束,此时的 γ'/γ 界面 的 Al、Ta 和 Ti 元素的成分分布处于一种平衡态,如 图 6(b)所示.这也就是 HIP 前 DD402 单晶中 γ'/γ 界面处元素的分布.此时如果有外来扩散源,能够 继续向 γ 基体中输送 Al、Ta 和 Ti 原子,那么 γ '相将 继续长大, γ '粒子间距继续减小,直到相邻 γ ′粒子接 合,如图 6 中的(c)、(d)所示.

3.2.2 γ′相粒子的定向连接

基于上述的理论分析,下面具体讨论扩散偶中 DD402 中的 γ 相的变化. 图 7 是热等静压前扩散偶 中 DD402 单晶的 γ 相(图中小立方块)结构. 其中 D 是 DD402 单晶和 FGH95 合金在扩散连接前的界 面间的距离; $d \neq DD402$ 单晶([001]取向) 中 γ 相间的间距, 也是 DD402 基体中的扩散通道宽度,为便于阐述元素的扩散特征, 三个晶体取向的扩散通道宽度分别表示为 $d_{[100]}$ $d_{[000]}$ 和 $d_{[001]}$.

图 7 热等静压前扩散偶中 DD402 单晶的 γ 相结构示意图 Fig. 7 Sketch of the morphology of γ phase in single crystal DD402 for the diffusion coupe before HIP

图 8 是在热等静压过程中,γ′相形成元素的定向扩散及γ′相定向生长的物理模型. 当 HIP 时,随着压力升高 D 逐渐减小,当减小到原子相互作用的

距离时 便形成了金属键,扩散偶中 γ[′]相形成元素 也开始向 DD402 侧扩散(图中的小箭头).在扩散 过程中,在[001]方向的通道内,与体中扩散通道接 触的 γ[′]相的晶面,即(100)面和(010)面可以不断地 获得 Al、Ti 和 Ta 原子,所以同时出现了沿[100]和 [010]方向的 γ′定向长大.而在[100]和[010]方向 的通道内,由于较少出现 γ′相形成元素的定向流 动,因此(001)面未出现 γ′相的定向长大.

图 8 热等静压过程中元素的定向扩散及 γ[´]粒子定向生长的物理模型 Fig. 8 Physical model of the directional diffusion of elements and the directional growth of γ[´] particles during HIP

随着元素扩散时间(HIP 保温保压时间)的 延长,γ[·]相沿[100]和[010]两个方向不断定向 生长,最后相邻的γ[·]粒子相遇,元素在γ基体中 的扩散通道也不断被封堵.当这些扩散通道被完 全闭合或由于工艺原因中断了 γ[′]相形成元素向 DD402 内侧的扩散时,即完成了第1阶段的 γ[′]相 定向长大,形成了定向连接态的筏形 γ[′]相,如图 9 所示.

图 9 定向连接的筏形 γ' 片层形貌: (a) 筏形 γ' 片层形貌; (b) 定向连接的 γ' 粒子 Fig. 9 Morphology of rafted γ' pieces after directional connection of γ' particles; (a) morphology of rafted γ' pieces; (b) directional connection of γ' particles

3.2.3 定向连接的 y⁻相的平坦化

当 γ 基体中的扩散通道被封闭后 ,γ ′相结束了 依靠外来扩散源的长大方式 ,γ ′/γ 界面处元素的成 分分布呈一种新的平衡状态. 而且在 γ ′相的凸起 处,其 γ'/γ 界面能高;在定向连接的凹面处,其界面 能较低.另外,由于结合界面的应力梯度作用, γ 基 体和 γ' 沉淀相中的弹性应变能密度的大小和分布 将发生改变.对于[001]取向的负错配度 DD402 单晶 合金,在[001]方向的应力梯度作用下,γ基体中的 [100]和[010]方向的点阵错配力与外应力相互减弱, 而[001]方向的点阵错配力与外应力相互增强,导致应 变能密度随应力的增加而增大,而且高于[100]和 [010](垂直于应力梯度)方向的弹性应变能密度^[8].

应变能密度高([001]方向)的基体通道中位错

密度高(见图 10(a)),且其将成为元素快速扩散通 道.因此 γ' 相定向连接后,其形成元素将通过位错 通道由 γ' 相凸处向基体中扩散,并不断向低界面能 的 γ' 相凹处富集,即通过自扩散完成 γ' 相凹处的平 坦化(见图 10(b)),最后形成如图 10(c)所示的筏 形化 γ' 相.

图 10 定向连接的筏形 γ′片层平坦化. (a) γ′定向连接后自扩散示意图; (b) γ′平坦化后形貌示意图; (c) 平坦化后筏形 γ′形貌 Fig. 10 Plainness process of rafted γ′ phase by directional connection: (a) sketch of γ′ self-diffusion after directional connection; (b) sketch of the morphology of rafted γ′ phase after planning; (c) morphology of rafted γ′ pieces

总之,在化学位梯度和成分梯度的驱动下, y[·]相 的筏形化可分为两个阶段:首先, y[·]相形成元素在基 体[001]方向的通道中远程定向扩散, y[·]相开始定 向生长,直到相邻的 y[·]粒子连接;然后在界面能的 驱动下,通过消耗自身的 y[·]相形成元素,产生近程 定向自扩散,使连接部位进一步平坦化.

3.3 筏形 γ[′]相的片层厚度的影响因素分析

3.3.1 原始 γ[′]相尺寸的影响

当 DD402 的 γ [·]相体积分数一定时 ,HIP 后的 γ [·] 片层厚度主要决定于原始立方状 γ [·]相尺寸 ,如果原 始 γ [·]相尺寸越细小 ,则 γ [·]片层越薄. 所讨论的扩散 偶中 ,DD402 合金原始 γ [·]相的平均尺寸为 0.5 μ m 左右. 因此 , γ [·]片层平坦化后的平均厚度也约为 0.5 μ m左右.

3.3.2 γ′相形成元素扩散流量的影响

上述的筏形化现象中, y[´]相定向长大与连接主 要是外来扩散源所致; 片层平坦化阶段是 y[´]相自身 消耗并长大的过程. 根据物质守恒定律,外来 y[´]相 形成元素的扩散流量越大,平坦化过程中消耗自身 元素越少, 筏形 y[´]相片层越厚.

3.3.3 热等静压工艺的影响

扩散偶中 DD402 合金 γ′相筏形化的本质是元 素互扩散 ,因此热等静压温度、压力和时间均是影响 γ′相筏形化的关键因素. 热等静压温度的升高(低 于固溶处理温度) 不仅粗化了 γ′相粒子 ,而且提高 了 γ′相形成元素的扩散流量; 热等静压压力越高 , 界面区的应力梯度越大 , [001]方向的扩散通道中 位错密度越高 ,加快了元素的扩散; 延长热等静压时 间 ,可使 γ′相形成元素扩散充分. 因此 提高上述热

等静压工艺参数都促进了元素扩散,增加了 γ′相形 成元素的扩散流量,均使筏形 γ′相片层增厚.

3.4 γ′相筏形化的方向

由于 γ [·]相为共格析出,因此 DD402 合金 γ [·]相定 向生长的方向是沿其晶体学方向的,即沿 [100]和 [010]晶向长大,而与结合界面处 γ [·]相形成元素的 定向扩散流(*J*_i)的方向无关,如图 11 所示.

图 11 γ′相筏形化的方向与其晶体取向的关系

Fig. 11 Relationship between the original crystal orientation of γ' precipitates and the direction of rafted γ' phase

4 结论

(1)有外来扩散源条件下,DD402 合金中的 γ[′]相 筏形化的驱动力是扩散偶中结合界面区的化学位梯度 和成分梯度,而应力梯度加速了 γ[′]相形成元素的扩散.

(2) 筏形化的过程包括两个阶段: 一是 γ′相粒 子的定向生长和连接阶段,主要以外来 γ′相形成元 素的远程扩散为主,这是 γ′相发生筏形化的主要阶 段; 二是筏形 γ′相片层的平坦化,主要依靠 γ′相自 身形成元素的近程自扩散完成.

(3)影响筏形 γ[´]相片层厚度的主要因素包括 DD402 合金中原始 γ[´]相的体积分数与尺寸,以及外

来扩散源的元素扩散流量.

(4) γ′相筏形化方向由原始 γ′相的晶体取向决定.

参考文献

- [1] Shui L, Tian SG, Jin T, et al. Microstructure of pre-compressed single crystal nickel-base superalloy and its coarsening feature during tensile creep. *Rare Met Mater Eng*, 2006, 35(8): 1182
 (水丽,田素贵,金涛,等.预压缩单晶镍基合金的组织结构及在拉伸蠕变期间的粗化特征.稀有金属材料与工程,2006,35(8):1182)
- [2] Guo X P, Fu H Z, Sun J H. Formation and rotation of γ´ rafts in Ni-base single crystal superalloy NASA IR100. Acta Metall Sin, 1994 30(7): A321
 (郭喜平,付恒志,孙家华. 单晶高温合金中γ´筏形组织的形 成及转动. 金属学报, 1994 30(7): A321)
- [3] Tkach T , Dirnfeld S F , Bamberger M , et al. The role of alloying element or γ' phase growth kinetics in Ni-base alloy. High Temp Mater Processes , 1996 , 15(3): 195
- [4] Peng Z F, Ren Y Y, Fan B Z, et al. A mechanism for directional coarsening of γ' precipitates in single crystal nickel-base superalloys. *Acta Metall Sin*, 1999, 35(1):9
 (彭志方 任遥遥 樊宝珍 等. 镍基单晶高温合金 γ'的定向粗 化机理. 金属学报,1999, 35(1):9)
- [5] Tien J K, Copley S M. The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed nickel-base superalloy crystals. *Metall Trans*, 1971 2(2):543

- [6] Nathal M V Ebert L J. Gamma prime shape change during creep of a nickel-base superalloy. *Scripta Metall*, 1983, 17: 1151
- [7] Socrate S , Parks D M. Numerical determination of the elastic driving force for directional coarsening Ni-superalloys. Acta Metall Mater , 1993 41: 2185
- [8] Wu W P, Guo Y F. Finite element analysis of directional coarsening mechanism in Ni-based superalloys. J Beijing Jiaotong Univ, 2008, 32(4):67
 (吴文平,郭雅芳. 镍基单晶高温合金定向粗化机制有限元分)

析. 北京交通大学学报 2008 32(4):67)

- [9] Yu X F, Tian S G, Du H Q, et al. Microstructure evolution of pre-compression on nickel-base single crystal superalloy during tensile creep. Acta Metall Sin, 2008 A4(8):961
 (于兴福,田素贵 杜洪强 等. 预压缩镍基单晶合金拉伸蠕变 期间的组织演化. 金属学报 2008 A4(8):961)
- [10] Yan L C, Sun J H, Dong D J, et al. Rafting of γ[´] phase and diffusion of γ[´] forming elements in single crystal for DD4O2/FGH95 of diffusion couple. J Univ Sci Technol Beijing, 2001 23(1):52 (闫来成 孙家华,董德俊,等. DD402/FGH95 扩散偶中单晶 合金 γ[′]相筏形化与其形成元素的扩散.北京科技大学学报, 2001 23(1):52)
- [11] Liu G X. Theory of Metallography. Beijing: Metallurgical Industry Press, 1980

(刘国勋. 金属学原理. 北京: 冶金工业出版社,1980)

[12] Yan L C, Sun J H, Yan P, et al. An investigation on the microstructure and properties of dual-superalloys DD402 and FGH95 bonding by HIP. *Acta Metall Sin*, 1999, 35(Suppl 2): S227 (闫来成 孙家华,燕平,等. 双合金热等静压扩散连接的组织和性能的研究. 金属学报, 1999, 35(Suppl 2): S227)