赤铁矿反浮选脱硅新型胺类捕收剂的结构性能计算

王纪镇1,2),邓海波2)⊠,王淀佐2)

1) 东北大学资源与土木工程学院, 沈阳 110819 2) 中南大学资源加工与生物工程学院, 长沙 410083 ⊠ 通信作者, E-mail: denghaibocsu@163.com

摘 要利用作者导出的计算公式,系统研究了赤铁矿反浮选脱硅捕收剂 N- 十二烷基 -1,3- 丙二胺 (CH₃(CH₂)₁₁NH(CH₂)₃NH₂,记为 DN₃)与 N- 十二烷基乙二胺 (CH₃(CH₂)₁₁NH(CH₂)₂NH₂,记为 DN₂)的结构性能,得出了该类捕收剂应具 有基团电负性较小、前线轨道能级差的绝对值较小、极性基断面尺寸较大、中心原子净电荷较大等结论.采用不同捕获 剂进行了赤铁矿反浮选脱硅试验.结果表明,DN₃和 DN₂的选择性和捕收性都好于十二胺 (CH₃(CH₂)₁₁NH₂),DN₃的 选择性优于 DN₂,DN₂的捕收性优于 DN₃.计算结果与实际浮选试验结果相符合. 关键词 赤铁矿;反浮选;脱硅;胺类 分类号 TD951

Structure-activity calculation of new amine collectors used in silicon removal of hematite in reverse flotation

WANG Ji-zhen^{1,2)}, DENG Hai-bo^{2) \bowtie}, WANG Dian-zuo²⁾

1) School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China

2) School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

 $\boxtimes~$ Corresponding author, E-mail: denghaibocsu@163.com

ABSTRACT The structure-activity of amine collectors, N-dodecyl-1,3-diaminopropanes (DN3) and N-lauryl ethylenediamine (DN2), was studied systematically with formulas derived by the authors. It is concluded that the collectors are characteristic of the smaller group electronegativity, the smaller absolute value of energy level difference of frontier molecular orbitals, the larger polar group diameter and the higher center atomic net charge. The collectors were used in reverse flotation of hematite for desilicication. The results show that the selectivity and collecting performance of DN₃ and DN₂ are better than those of dodecylamine (CH₃(CH₂)₁₁NH₂). The selectivity of DN₃ is better than that of DN₂, while the collecting performance of DN₂ is better than that of DN₃. These calculation results are in accordance with the flotation test ones.

KEY WORDS hematite; reverse flotation; desilicication; amines

我国是世界第一铁矿石生产和消费大国,国内 铁矿资源具有"贫、细、杂、散",开发利用难度大 的特点,近几年已成为世界铁矿选矿技术研究开发 中心.新世纪以来,根据"提铁降硅,实现企业整体 效益最大化"的观点,在铁矿浮选方面取得了较大 进展.烷基胺类捕收剂在铁矿石反浮选、萤石浮选 和铝土矿反浮选脱硅中的应用都有较多报道^{[[1-3]}, 但国内铁矿石浮选采用胺类捕收剂的选厂较少,且 药剂种类少,主要以十二烷基脂肪胺和混合胺为主, 对二元胺捕收剂研究相对较少.有研究者合成了新 型胺类捕收剂 N-十二烷基 -1,3-丙二胺和 N-十二 烷基乙二胺,并研究了其对赤铁矿及石英浮选行为 的影响^[4-6].

国内外学者对药剂结构性能做了大量研究.Taggart等^[6]提出了溶度积假说;一些学者利用配合物稳定常数^[7]、解离常数预测浮选药剂性质;

王淀佐^[8] 提出了浮选药剂基团电负性理论、亲水-疏水平衡值 (HLB)、临界胶团浓度 (CMC)、量子 化学参数等一系列判据; Israelachili 和 Adams^[9] 用 GPT 理论,推导出了一种选择药剂的能量判据; 陈 建华等^[10] 提出了浮选药剂的亲固能计算公式; 王 纪镇和邓海波^[11] 导出了一种比较浮选捕收剂选择 性的方法.随着量子化学计算技术的发展,人们开 始通过量化软件计算某些参数衡量化合物性质.

十二胺 (CH₃(CH₂)₁₁NH₂) 在赤铁矿反浮选中较为常用. N- 十二烷基 -1,3- 丙二胺 (CH₃(CH₂)₁₁NH(CH₂)₃NH₂,记为 DN₃)和 N- 十二烷基乙二胺 (CH₃(CH₂)₁₁NH(CH₂)₂NH₂,记为 DN₂)是较新的赤铁矿反浮选捕收剂,已有相关浮选试验和仪器测试研究,但该两种药剂的结构性能的理论计算研究较少,对赤铁矿反浮选阳离子捕收剂的结构性能的共性探讨更未见报道.本文以十二 胺、DN₂和 DN₃ 三种捕收剂为例,系统研究此类 捕收剂具备的特点,为进一步研究赤铁矿反浮选捕 收剂提供一定的理论依据基础.

1 赤铁矿反浮选胺类捕收剂结构性能计算

一种药剂一般不会同时具备好的选择性和捕收性^[12].药剂的结构决定其自身的选择性和捕收性,选择性和捕收剂统称为药剂性能.本节从基团 电负性、极性基断面尺寸、前线轨道能级和中心原 子净电荷等方面探讨 DN₂ 和 DN₃ 两种赤铁矿反浮 选新型捕收剂的结构性能,并与常用且研究较透彻 的阳离子反浮选捕收剂十二胺进行比较.

赤铁矿反浮选新型胺类捕收剂性能与基团电 负性关系

基团电负性是药剂分子设计中最重要的理论 参数之一,讨论基团电负性对药剂选择性的影响具 有重要的意义. 笔者在文献 [11] 中讨论了药剂选择 性和基团电负性的关系,与文献 [10] 符号统一后, 该关系式为

$$R_{12} = \frac{(x_{AB1} - x_{H_2O})[\sum (x_g - x_{B_2})^2 + \sum (x_{B_2} - x_{A_2})^2]}{(x_{AB2} - x_{H_2O})[\sum (x_g - x_{B_1})^2 + \sum (x_{B_1} - x_{A_1})^2]}.$$
(1)

式中: *R*₁₂ 为药剂选择性指数,其值越大,表示浮选捕收剂的选择性越好; *x*_{AB1} 和 *x*_{AB2} 分别为被浮选矿物和被抑制矿物的基团电负性; *x*_g 为药剂基团 电负性; *x*_A 为被浮或被抑制矿物表面不与药剂进行 键合的元素的电负性, *x*_B 为被浮或被抑制矿物表面 与药剂进行键合的元素的电负性,且 *x*_{AB=}*x*_A - *x*_B.

在赤铁矿阳离子捕收剂反浮选中,赤铁矿和石 英矿物的阴离子为氧原子,其电负性为 3.44,阳离 子分别为铁离子和硅离子,元素电负性分别为 1.83 和 1.90,氢元素电负性为 2.20,代入式 (1)得

$$R_{\text{fi}\notin - \# \notin \#} = \frac{(x_{\text{SiO}_2} - x_{\text{H}_2\text{O}})(\sum (x_{\text{g}} - x_{\text{Fe}})^2 + \sum (x_{\text{Fe}} - x_{\text{O}})^2)}{(x_{\text{Fe}_2\text{O}_3} - x_{\text{H}_2\text{O}})(\sum (x_{\text{g}} - x_{\text{Si}})^2 + \sum (x_{\text{Si}} - x_{\text{O}})^2)}.$$
(2)

为便于计算,将多个亲固基团捕收剂的基团电负性 先等效为一个数值,那么式(2)变为

*R*石英 - 赤铁矿 =

$$\frac{[x_{\rm SiO_2} - x_{\rm H_2O})[(x_{\rm g} - x_{\rm Fe})^2 + (x_{\rm Fe} - x_{\rm O})^2]}{[x_{\rm Fe_2O_3} - x_{\rm H_2O})[(x_{\rm g} - x_{\rm Si})^2 + (x_{\rm Si} - x_{\rm O})^2]}.$$
 (3)

经简单的数学处理得 R_{石英-赤铁矿} 与浮选捕收剂基团 电负性关系为

$$\frac{\partial R_{\mathrm{fig.},\mathrm{fig.}}}{\partial x_{\mathrm{g}}} < 0. \tag{4}$$

(5)

由(4)式可得,捕收剂的基团电负性 x_g越小,选择性指数 R_{石英-赤铁矿}越大,选择性越好,即赤铁矿阳离子反浮选捕收剂基团电负性越小其选择性越好.

式 (2)~(4) 中极性基的基团电负性 x_g 的计算按 照笔者在文献 [11] 中提出的未经简化的王淀佐电负 性公式:

$$x_{\rm g} = 0.31 \left[(N - P) + \sum_{i=0}^{n} \frac{(2m_i - S_{i+1})x_i + S_{i+1}x_{i+1}}{2.7^i (x_i + x_{i+1})} + 1 \right] / r + 0.5.$$

式中,r为亲固原子的共价半径,N为亲固原子的 价电子数, P 为亲固原子被相邻原子键合的电子 数, m_i 为与亲固原子间隔为i的二电子数, S_{i+1} 为与亲固原子相隔 i 键的原子未成键电子数, x_i 与 x_{i+1} 分别为与亲固原子相隔 i 与 i+1 键的原子的电 负性. 对于 DN₂(CH₃(CH₂)₁₁NH(CH₂)₃NH₂), 其亲 固基团分别为 -NH- 和 -NH₂. 按照式 (5), DN₂ 第 一个极性基团 -NH2 电负性为 4.167, DN2 另外一 个极性基 --NH- 的基团电负性为 4.912; DN3 基团 -NH2 和 -NH- 电负性数值分别为 4.175 和 4.948, 十二胺 -NH2 基团电负性为 4.180. 可见, DN3 的 -NH2 和 -NH- 基团电负性分别大于 DN2 的 -NH2 和-NH-基团电负性.由式(4)可知,赤铁矿阳离子 反浮选中, DN2 选择性好于 DN3.DN2 的 -NH- 基 团电负性大于十二胺的-NH2 电负性,再加上 DN2 的-NH2 电负性,则 DN2 比十二胺的电负性更大,

故十二胺的选择性好于 DN₂.综上所述,赤铁矿阳 离子捕收剂反浮选中,由基团电负性可得出三种药 剂的选择性顺序为 DN₃<DN₂<十二胺.

新型赤铁矿反浮选胺类捕收剂性能与极性基 断面尺寸的关系

通常,极性基几何尺寸越大其作为捕收剂的选择性越好,DN₃、DN₂和十二胺三种药剂的极性部分分别为-NH(CH₂)₃NH₂、-NH(CH₂)₂NH₂和-NH₂,很显然,极性基几何尺寸大小顺序及相应的药剂选择性顺序为DN₃>DN₂>十二胺,但该结论与上一节得到的结论相反,因此应具体分析何种因素主要影响捕收剂的选择性.

极性基的基团电负性和断面尺寸分别在价键 因素和空间几何因素两方面影响浮选捕收剂的选择 性性能,如本文的三种药剂,基团电负性和极性基 断面尺寸对浮选捕收剂选择性的影响有时候并不一 致,因此分析基团电负性和断面尺寸对选择性的影 响主次关系对浮选药剂分子设计和药剂性能的讨论 具有重要意义.笔者在文献 [11] 提出比较浮选药剂 选择性因素主次的判据,当药剂有多个亲固基团时 若满足

$$\frac{\Delta\delta}{\Delta x_{\rm g}} > \left| \frac{\delta}{\sum 2(x_{\rm g} - x_{\rm O})} \right|. \tag{6}$$

则极性基断面尺寸对浮选药剂选择性的影响大于基团电负性.反之若不能满足式(6),则基团电负性对浮选药剂选择性的影响大于极性基断面尺寸.式(6)还等价于:

$$\frac{\Delta\delta}{\delta} > \left| \frac{\Delta x_{\rm g}}{\sum 2(x_{\rm g} - x_{\rm O})} \right|. \tag{7}$$

式 (6) 和式 (7) 中: δ 和 $\Delta\delta$ 分别表示极性基断面 尺寸及差值; x_g 和 Δx_g 分别表示基团电负性及差 值; x_O 代表氧元素的电负性,其值为 3.44. 仔细 分析可知,式 (7) 不等号的左边可表示极性基断 面尺寸的相对差值,右边可表示基团电负性的相对 差值.

下面根据式 (7) 来比较分析基团电负性及极性 基团尺寸对捕收剂选择性性能的影响.

1.2.1 铁矿石反浮选中 DN₃ 与 DN₂ 的选择性差异 比较

因为 DN₃ 基团与 DN₂ 基团的电负性差值: $\Delta x_{g} = (4.175 + 4.948) - (4.167 + 4.912) = 0.044,$ $\sum 2(x_{g} - x_{O}) = 2 \times [(4.175 - 3.44) + (4.948 - 3.44)] = 4.486.$

所以,基团电负性的相对差值:

$$\Delta x_{\rm g} / \sum 2(x_{\rm g} - x_{\rm O}) = 0.044/4.486 = 0.0098.$$
 (8)

即, DN₃和 DN₂的电负性相对差值为 0.0098

 DN_3 极性部分 $-NH(CH_2)_3NH_2$ 两氮原子间相 隔 3 个 $-CH_2$ 基团, DN_2 极性部分 $-NH(CH_2)_2NH_2$ 两氮原子间相隔两个 $-CH_2$ 基团, DN_3 和 DN_2 极 性基断面尺寸的相对差值为

$$\Delta \delta / \delta = \left(\delta_{\mathrm{DN}_3} - \delta_{\mathrm{DN}_2} \right) / \delta_{\mathrm{DN}_2} \approx \left(\delta_{(-\mathrm{CH}_2-)_3} - \delta_{(-\mathrm{CH}_2-)_2} \right) / \delta_{-\mathrm{NH}_2} > 0$$

 $\delta_{\rm C}/(2\delta_{\rm C}+2\delta_{\rm N}+2\delta_{\rm H})=0.218.$ (9) 式中, $\delta_{\rm C}$ 、 $\delta_{\rm N}$ 和 $\delta_{\rm H}$ 分别为碳原子、氮原子和氢 原子的共价键半径,大小分别为 0.077、0.070 和 0.030 nm.

由式 (8) 和式 (9) 得

$$\Delta \delta / \delta > \Delta x_{\rm g} / \sum 2(x_{\rm g} - x_{\rm O}).$$
 (10)

式 (10) 和 (6) 完全一致,因此极性基断面尺 寸是 DN_3 和 DN_2 选择性差异的主导因素, DN_3 极 性部分的断面尺寸大于 DN_2 ,故 DN_3 选择性好于 DN_2 .

1.2.2 铁矿石反浮选中十二胺与 DN₂ 的选择性差 异比较

同 1.2.1 计算,十二胺和 DN₂ 相比,基团电负 性相对差值为

$$\Delta x_{\rm g} / \sum 2(x_{\rm g} - x_{\rm O}) = 4.899 / (2 \times 2.199) = 1.114.$$
 (11)

十二胺的极性部分为伯胺基 $-NH_2$ 基团, DN_2 的极性部分为含有伯胺基 $-NH_2$ 和仲胺基 $-NH_-$, $-NH_2$ 和 $-NH_-$ 基团的几何大小 δ_{-NH_2} 和 δ_{-NH_-} 分别取 0.36 和 0.68 nm^[6]. 显然, DN_2 极性部分 $-NH(CH_2)_2NH_2$ 的尺寸大于十二胺极性部分尺寸. 因此, DN_2 和十二胺极性部分断面尺寸相对差值为

$$\Delta \delta / \delta = (\delta_{\mathrm{DN}_2} - \delta_{+ \exists k}) / \delta_{+ \exists k} > [(\delta_{-\mathrm{NH}_2} + \delta_{-\mathrm{NH}_2}) - \delta_{-\mathrm{NH}_2}] / \delta_{-\mathrm{NH}_2} = 1.889.$$

$$\Delta \delta / \delta > \Delta x_{\rm g} / \sum 2(x_{\rm g} - x_{\rm O}).$$
 (13)

(19)

式 (13) 和式 (6) 完全一致,因此极性基断 面尺寸是十二胺和 DN₂ 选择性性能差异的主导因 素,DN₂ 极性部分的断面尺寸大于十二胺,故 DN₂ 选择性好于十二胺.

综上所述,综合考虑极性基的基团电负性和断面尺寸,可得出药剂选择性强弱顺序为 DN₃>DN₂> 十二胺.

新型赤铁矿反浮选胺类捕收剂性能与量子化 学参数的关系

在浮选药剂研究领域,量子化学参数与基团电 负性理论一样,也是浮选药剂分子设计的重要参数. 下面,应用量子化学软件分别计算了赤铁矿阳离子 捕收剂反浮选中几种药剂和定位离子的量子化学参数,然后应用量子化学的成键理论,分析了本文三 种药剂性能.

石英是赤铁矿反浮选中的最为常见的脉石矿 物,阳离子捕收剂对石英和赤铁矿的相互作用的 差异与选择性密切相关,而相互作用于矿物表面 的定位离子有关。石英的零电点 PZC 在 2~3 之 间,铁矿石反浮选的矿浆 pH 值远大于 3,而当 在矿浆 pH 值大于石英的零电点 PZC 时,石英表 面的定位离子可认为是 OH-[13], 由文献 [13] 查得 Fe(OH) 为赤铁矿的定位离子. 胺类捕收剂在溶 液中常以阳离子形式存在,其量子化学参数以及为 石英和铁矿表面的定位离子的量子化学参数如表 1 所示. 由表 1 可知 $Fe(OH)_{4}^{-}$ 和 OH^{-} 的最低未 占据轨道能级 LUMO 能级 (EL) 高于捕收剂基团 离子[C₁₂H₂₅NH₂(CH₂)₃NH₃]²⁺、[C₁₂H₂₅NH₂(CH₂)₂-NH₃]²⁺和C₁₂H₂₅NH₃⁺的最高占据轨道能级HOMO 能级 (E_H),因此赤铁矿和石英可能与药剂形成化 学键而发生相互作用. 药剂 LUMO 能级与 HOMO 能级的差值 ΔE_{H-L} 可衡量药剂的活性, ΔE_{H-L} 值 越小,药剂的活性越高,药剂与矿物作用越强,捕 收性较好,选择性越低;反之亦然.此外,药剂亲固 原子的净电荷 (Q_N) 越正,药剂与荷负电的矿物表 面的静电作用越强,相互作用越强,捕收性较好, 选择性一般也越低。分析表 1 可得出相互作用和 捕收性强弱的顺序为 $DN_2 > DN_3 > + - E_R$; DN_3 的 ΔE_{H-L} 比 DN_2 大,净电荷 Q_N 较小,有助于增加 赤铁矿和石英的浮选差异,因此 DN_3 的选择性好 于 DN_2 . 十二胺的 ΔE_{H-L} 和 Q_N 都小于 DN_2 和 DN_3 ,但选择性不如 DN_2 和 DN_3 ,可能是由于空间 几何因素差异过大所致.

为证明表 1 量子化学计算结果的正确性,本研究分析了药剂吸附前后石英表面动电位的偏移量,动电位偏移量可表征药剂捕收性. 文献 [6] 测得了石英在浓度都为 2×10^{-4} mol·L⁻¹ 的 DN₂、DN₃ 溶液以及蒸馏水中的动电位,试验结果如图 1 所示.分析图 1 可知,浮选体系中加等量捕收剂,DN₂ 的加入使动电位的偏移量大于 DN₃,因此 DN₂ 的捕收性比 DN₃ 强,与表 1 计算结果相符.

表1 定位离子和药剂的前线轨道能级及净电荷

Table 1	Frontier molecular	orbital and net	charge of immobiliz	zed ions and reagents

离子种类	$E_{\rm H}/{\rm eV}$	$E_{\rm L}/{\rm eV}$	$Q_{ m N}$	$\Delta E_{\rm H-L}/{\rm eV}$
$\operatorname{Fe}(\operatorname{OH})_4^-$	2.8152	6.2506	_	3.4354
OH-	5.7528	12.9608	_	7.2180
$[\rm C_{12}\rm H_{25}\rm NH_2(\rm CH_2)_3\rm NH_3]^{2+}$	-10.5019	-7.4419	0.5807, 0.1807	3.0600
$[\rm C_{12}\rm H_{25}\rm NH_2(\rm CH_2)_2\rm NH_3]^{2+}$	-10.5890	-8.3422	0.6172, 0.1991	2.2467
$\mathrm{C_{12}H_{25}NH_3^+}$	-9.5418	-4.1344	0.5360	5.4074

注: $[C_{12}H_{25}NH_2(CH_2)_3NH_3]^{2+}$ 和 $[C_{12}H_{25}NH_2(CH_2)_2NH_3]^{2+}$ 的 Q_N 的第一个值代表 –NH₃ 基团中 N 的净电荷,第二个值代表 –NH₂- 基团中 N 的净电荷。

图 1 不同 pH 值下 DN₂ 溶液、DN₃ 溶液和蒸馏水中石英 表面动电位

Fig.1 Zeta potential of quartz surfaces in DN_2 and DN_3 solutions and distilled water at different pH values

2 浮选试验结果验证

本文应用浮选药剂理论分析了 DN₃ 和 DN₂ 的 浮选性能, DN₃ 和 DN₂ 两种药剂已有浮选试验研 究,为进一步分析两种药剂的性能,笔者引用相关 文献 [4-5] 数据验证本文的计算结果.

2.1 单矿物浮选试验验证

图 2 和图 3 分别为文献 [4-5] 给出的在采用最 佳用量不同捕收剂下, pH 值对石英和赤铁矿浮选 回收率的影响. 由两图可以看出, DN₂ 和 DN₃ 的捕 收性确实强于十二胺, 由赤铁矿和石英的回收率差 值计算, 得出药剂的选择性顺序为 DN₃>DN₂> 十 二胺, 试验结果与本文计算结果一致.

2.2 人工混合矿浮选试验验证

经试验确定最佳药剂用量后,文献[5]研究了

图 2 不同 pH 值下采用 DN₃ 和十二胺浮选石英和赤铁矿 后所得回收率

Fig.2 Recovery rate of quartz and hematite after flotation by DN_3 and dodecyl amine at different pH values

图 3 不同 pH 值下采用 DN₂ 和十二胺浮选石英和赤铁矿 所得回收率

Fig.3 Recovery rate of quartz and hematite after flotation by DN_2 and dodecyl amine at different pH values

DN₃和 DN₂两种药剂对赤铁矿和石英人工混合矿 浮选分离效果.在浮选试验中,精矿品位和回收率 是浮选药剂性能的主要评价指标,但精矿品位和回 收率随着药剂种类和用量改变,变化趋势常常相反, 给浮选实验结果分析带来困难.为此,本研究将 E_{22} 和 E_{4} 两个选矿效率综合判据为辅助方法,分析这 两种浮选药剂性能.精矿品位、 E_{22} 和 E_{4} 的值越大, 表示药剂性能越好.选矿效率 E_{22} 和 E_{4} 的计算公 式为 [14]:

$$E_{i\mathbb{X}} = \frac{\varepsilon(\beta - \alpha)}{\beta(1 - \alpha)},\tag{14}$$

$$E_{\#} = \varepsilon \frac{\beta - \alpha}{1 - \alpha}.$$
 (15)

式中, ε 为回收率, β 为精矿中有用矿物的质量分数, α 为原矿中有用矿物的质量分数.

在文献 [5] 的试验条件和试验所得的精矿品位 和回收率下,本文计算得出了本试验条件下的选矿 效率 E_{α} 和 $E_{\#}$,具体数据如表 2 所示.表 2 中,最 佳药剂用量、回收率和品位是由文献 [5] 所得, E_{α} 和 $E_{\#}$ 是本文根据公式 (14) 和 (15) 所得.分析表 2 数据可知,在最佳的浮选条件下,DN₃ 为浮选捕收 剂时得到精矿的品位以及 E_{α} 和 $E_{\#}$ 都大于 DN₂, 充分说明的 DN₃ 选择性好于 DN₂.

3 结论

(1)应用笔者导出的浮选药剂结构与性能计算 公式,提出赤铁矿反浮选的阳离子捕收剂的选择性 随基团电负性增加而降低,随极性基断面尺寸的增 加而增强,赤铁矿反浮选的阳离子捕收剂分子设计 可参照此原则进行.十二胺、N-十二烷基乙二胺 (DN₂)和 N-十二烷基 -1,3-丙二胺 (DN₃)基团电 负性和极性基断面尺寸依次增加,极性基断面尺寸 是选择性的主导因素,三种药剂选择性依次增强.

(2)应用量子化学成键理论、计算浮选药剂量 子化学参数以及矿物表面定位离子的量子化学参 数,得出赤铁矿反浮选的阳离子捕收剂的前线轨道 能级差 Δ*E*_{H-L} 较低、静电荷较大者,捕收性一般 较好,选择性一般较差,但有时还需考虑极性基几 何因素的影响.计算表明,十二胺、DN₃ 和 DN₂ 的 前线轨道能级差的绝对值依次降低,净电荷依次增 加,捕收性依次增强.

(3) 药剂结构性能计算所得结论与他人所 做^[4-5]单矿物浮选试验和人工混合矿浮选试验结 果一致.应用评价浮选分离效果的选矿效率综合判 据 E_α和 E_#计算,得出 DN₃的综合性能好于 DN₂, 与笔者导出的药剂结构性能计算公式的计算评价结 果一致.

表 2 赤铁矿 – 石英人工混合矿浮选试验结果

Table 2	Flotation	experimental	he of	manually	mixed	ore of	hematite	and a	martz
Table 7	1 100001011	capermentai	ne or	manually	mixcu	010 01	mannauruc	ana	1000 02

_							
	试验编号	原矿, $\alpha/\%$	精矿, β /%	回收率, ε /%	$E_{\oplus}/\%$	$E_{lepha}/\%$	最佳药剂用量/(mg·L ⁻¹)
	1	50	89.69	86.35	76.42	68.54	DN3 66.7, 淀粉 6.67
	2	50	86.29	91.29	76.78	66.25	DN ₂ 41.7, 淀粉 3.33
	3	60	91.03	91.33	77.83	70.85	DN3 58.3, 淀粉 6.67
	4	60	87.43	92.13	72.30	63.20	DN ₂ 41.7, 淀粉 3.33

注: 各点 pH 值均为 7.27.

参考文献

- Iwasaki I. Iron ore flotation, theory and practice. Min Eng, 1983, 35: 622
- [2] Cao X F, Hu Y H, Jiang Y R, et al. Flotation mechanism of aluminum silicate minerals with N-dodecy-1,3diaminopropane. *Chin J Nonferrous Met*, 2001, 11(4): 693

(曹学锋,胡岳华,蒋玉仁,等. 新型捕收剂 N-十二烷基 -1,3-丙二胺浮选铝硅酸盐类矿物的机理.中国有色金属学 报,2001,11(4):693)

- [3] Du P, Cao X F, Hu Y H, et al. Study of structure and property of amine collectors. *Light Met*, 2003(1): 27 (杜平, 曹学锋, 胡岳华, 等. 胺类捕收剂的结构与性能研 究. 轻金属, 2003(1): 27)
- [4] Mei G J, Xue Y L, Yu Y F. Synthesis and application of new-type cationic collector, N-dodecyl-1, 3-diaminopropanes. *Min Metall Eng*, 1999, 19(4): 26
 (梅光军,薛玉兰,余永福. 捕收剂 N-十二烷基 -1,3-丙二 胺的合成与应用. 矿冶工程, 1999, 19(4): 26)
- [5] Liu W G. Synthesis and Flotation Performance of New Collectors in Reverse Flotation of Hematite [Dissertation]. Shenyang: Northeast University, 2010: 76 (刘文刚.新型赤铁矿反浮选脱硅捕收剂的合成及浮选性 能研究 [学位论文]. 沈阳:东北大学, 2010: 76)
- [6] Taggart A F, Taylor T C, Ince C R. Flotation Practice. New York: AIME, 1928: 285
- [7] Marabini A M, Barbaro M, Alesse V. New reagents in sulphide mineral flotation. Int J Miner Process, 1991, 33(1-4): 291

- [8] Wang D Z. The Mechanism and Application of Floating Agents. Beijing: Metallurgical Industry Press,1986: 84
 (王淀佐. 浮选药剂作用原理及应用. 北京: 冶金工业出版 社, 1986: 84
- [9] Israelachili J N, Adams G E. Direct measurement of long range forces between two mica surfaces in aqueous KNO₃solution. *Nature*, 1976, 262(5571): 774
- [10] Chen J H, Feng Q M, Lu Y P. Calculation for energy of interaction of floatation reagent with mineral surface. *Chin J Nonferrous Met*, 1999, 9(2): 351
 (陈建华, 冯其明, 卢毅屏. 浮选药剂的亲固能计算. 中国有 色金属学报, 1999, 9(2): 351)
- [11] Wang J Z, Deng H B. A method for comparing the selectivity of flotation collectors and its verification. Nonferrous Met Miner Process Sect, 2011(6): 60
 (王纪镇, 邓海波. 一种比较浮选捕收剂选择性的方法及其验证. 有色金属:选矿部分, 2011(6): 60)
- [12] Lin Q, Wang D Z. Reactivity and selectivity of floatation reagents. Nonferrous Met, 1990, 42(4): 32
 (林强, 王淀佐. 浮选药剂的活性——选择性原理. 有色金 属, 1990, 42(4): 32)
- [13] Wang D Z, Hu Y H. Solution Chemistry of Flotation. Changsha: Hunan Science Technology Press, 1988: 221 (王淀佐, 胡岳华. 浮选溶液化学. 长沙: 湖南科技出版社, 1988: 221)
- [14] Xu S. Separability Study of Ore. Beijing: Metallurgical Industry Press, 2007: 287 (许时. 矿石可选性研究. 北京: 冶金工业出版社, 2007: 287)