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ABSTRACT Unlike the traditional oildubricated bearing the waterJubricated bearing has unique advantages because of which lead
it has important applications in all types of high-speed rotating machinery. Under actual working conditions the lubrication water will
inevitably mix with a certain amount of undissolved gas which too will participate in the lubrication process. In this study computa—
tional fluid dynamics ( CFD) software Fluent was used to analyze the characteristics of the high-speed waterdubricated bearing and to
investigate the influence of the amount of undissolved gas on the phase distribution of the gas phase pressure peak value and bearing
performance. The full cavitation model and gasHiquid mixture model were employed in this study. The results show that in the high—
speed water-ubricated bearing clearance the gas phase is distributed in the divergence wedge and the maximum gas volume fraction
exists on the surface of the shaft; When the eccentricity is small a certain amount of undissolved gas can offset the gas phase distribu—
tion in the bearing gap and reduce the load-carrying capacity of the bearing. However the gas appears to have no clear influence on
the pressure peak and the frictional power consumption. As the bearing eccentricity increases the influence of the undissolved gas dis—
appears gradually.
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Fig.2 Structure of sliding bearing
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Table 1 Geometric parameters of sliding bearing structure

D/mm 15
B/mm 15
d/mm 14. 96
[/mm 1
1.3
Gambit
150 ~ 180
3

3

Fig.3 Structure of water film grid
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Fig.4 Axis surface gas phase volume fraction distribution when &, =0.1: (a) ay =0; (b) ayz =0.4
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Fig.5 Axis surface gas phase volume fraction distribution when g5 =0.5: (a) ay =0; (b) az=0.4
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8 . (a) & =0.1; (b) & =0.25; (c) & =0.50

Fig.8 Distribution of gas phase volume fration on the sample line with different eccentricities: (a) &, =0.1; (b) &, =0.25; (¢) &5 =0.50
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Fig.10  Axis surface gas phase volume fraction distribution when

£ =0.25 and o, =0. 1

Fig.9 Distribution of the maximum gas volume fraction on the sam—

ple line with different volume fractions of undissolved gas
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Fig.12 Distribution of pressure on the sample line with different eccentricities: (a) &, =0.1; (b) &, =0.25; (c) & =0.50
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Fig.13 Peak value of pressure on the sample line with different vol—

ume fractions of undissolved gas

14

Fig.14 Bearing capacity under different volume fractions of undis—

solved gas

2 F
Table 2 Bearing capacity and the offset angle under different volume
fractions
/N
e F, F, F 0/(°)
0 -2.84 38.23 38.33 85.75
0.10 0.1 0.28 37.05 37.05 90. 43
0.4 0.38 37.17 37.18 90. 58
0 -16.96  68.28 70. 36 76. 05
0.25 0.1 -17.56  68.09 70. 31 75.54
0.4 -17.70  68.04 70. 30 75.42
0 -70.07 130.43 148.06 61.75
0.50 0.1 -64.31 135.31 149.82 64. 58
0.4 -69.16 131.38 148.47 62.24

15

Fig.15  Friction torque under different volume fractions of undis—

solved gas
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