

基于克劳斯反应的烟气脱硫离子液体制备硫磺的研究

陈佳煌 李田玉 赵宁辛 涂玉鑫 关利聪 王瑞祥 徐志峰 刘志楼

Study on the efficient production of sulfur from SO₂-containing ionic liquid via the liquid-phase Claus reaction

CHEN Jiahuang, LI Tianyu, ZHAO Ningxin, TU Yuxin, GUAN Licong, WANG Ruixiang, XU Zhifeng, LIU Zhilou

引用本文:

陈佳煌, 李田玉, 赵宁辛, 涂玉鑫, 关利聪, 王瑞祥, 徐志峰, 刘志楼. 基于克劳斯反应的烟气脱硫离子液体制备硫磺的研究 [J]. 北科大: 工程科学学报, 优先发表. doi: 10.13374/j.issn2095-9389.2024.05.10.002

CHEN Jiahuang, LI Tianyu, ZHAO Ningxin, TU Yuxin, GUAN Licong, WANG Ruixiang, XU Zhifeng, LIU Zhilou. Study on the efficient production of sulfur from SO₂-containing ionic liquid via the liquid-phase Claus reaction[J]. *Chinese Journal of Engineering*, In press. doi: 10.13374/j.issn2095-9389.2024.05.10.002

在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2024.05.10.002

您可能感兴趣的其他文章

Articles you may be interested in

添加剂在离子液体电沉积金属及合金中的应用

Application of additives for the electrodeposition of metals and alloys from ionic liquids 工程科学学报. 2024, 46(4): 657 https://doi.org/10.13374/j.issn2095-9389.2023.02.17.002

TiO₂光催化强化[HO₂MMim][HSO₄]H₂O₂脱除煤中有机硫的研究

Photocatalytic enhanced [HO2MMim][HSO4]H2O2 removal of organic sulfur from coal

工程科学学报. 2023, 45(1): 72 https://doi.org/10.13374/j.issn2095-9389.2021.06.24.003

改性兰炭烟气SO。吸附材料的制备及其再生性能

Preparation and regeneration performance of modified semi–carbon for flue gas SO_2 adsorbent

工程科学学报. 2021, 43(2): 223 https://doi.org/10.13374/j.issn2095-9389.2020.02.21.001

离子液体对不粘煤煤粉自燃特性的影响

Effect of ionic liquid on the spontaneous combustion characteristics of noncaking pulverized coal 工程科学学报. 2022, 44(12): 2008 https://doi.org/10.13374/j.issn2095-9389.2021.05.18.003

离子液体改性MWCNTs、MoS,及其复合纳米流体的摩擦学性能

Tribological properties of ionic liquid modified MWCNTs, MoS2, and their composite nanofluids

工程科学学报. 2023, 45(2): 286 https://doi.org/10.13374/j.issn2095-9389.2021.08.05.004

二氯甲烷和甲苯对咪唑离子液体结构和性质及铝电沉积的影响

Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid

工程科学学报. 2021, 43(8): 1037 https://doi.org/10.13374/j.issn2095-9389.2020.12.03.002

工程科学学报,第 47 卷,第 x 期: 1-10, 2025 年 x 月 Chinese Journal of Engineering, Vol. 47, No. x: 1-10, x 2025

https://doi.org/10.13374/j.issn2095-9389.2024.05.10.002; http://cje.ustb.edu.cn

基于克劳斯反应的烟气脱硫离子液体制备硫磺的研究

陈佳煌¹⁾,李田玉²⁾,赵宁辛¹⁾,涂玉鑫¹⁾,关利聪¹⁾,王瑞祥¹⁾,徐志峰³⁾,刘志楼^{1)⊠} 1)江西理工大学战略有色金属绿色低碳冶金江西省重点实验室,赣州 341000 2)黑龙江紫金铜业有限公司,齐齐哈尔 161000 3)江西应 用技术职业学院,赣州 341000 ⊠通信作者, E-mail: 1218786489@163.com

摘 要 有色冶炼烟气中的二氧化硫 (SO₂) 是一种刺激性的有毒气体,将其高效的捕获并转化成硫磺是行业绿色发展的目标.离子液体 (IL) 因稳定性高、可调控性好、可循环性强等特点,在 SO₂ 捕获和资源化回收领域有着巨大的潜力.本文在离子液体吸收剂介导下,通过耦合克劳斯 (Claus) 反应,探究了四甲基胍醋酸盐 ([TMG]Ac) 体系中 SO₂ 的吸收和转化能力.实验结果表明:通过酸碱中和制备的 [TMG]Ac 离子液体具有优异的 SO₂ 吸收能力 (吸收温度为 20 ℃,且 SO₂ 流速为 50 mL·min⁻¹时,每克离子液体能吸收 1.06 g SO₂),优于相同阳离子吸收剂;在室温下通入 H₂S 气体,被捕获的 SO₂ 可以快速原位转化为硫磺 (SO₂转化率高达 99%);采用高温熔化的方式使反应产物固液分离,结合 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、X 射线能谱 (EDS) 分析方法,确定了最终产物为 S₈.四次循环后,吸收剂的 SO₂转化率、质量以及吸收量没有太大变化.通过红外光谱 (IR) 和核磁共振波谱 (NMR)表征方法,提出了 [TMG]Ac 吸收 SO₂ 机理,并研究了吸收剂有水和无水的情况下 SO₂ 的转化机理.本研究不仅为离子液体高效脱硫提供了基础,还为 SO₂ 资源化再回收提供了思路,助力了有色冶炼行业的绿色高质量发展. **关键词** 冶炼烟气;二氧化硫;四甲基胍醋酸盐离子液体;克劳斯反应;硫磺;资源回收 **分类号** X756

Study on the efficient production of sulfur from SO₂-containing ionic liquid via the liquid-phase Claus reaction

CHEN Jiahuang¹⁾, LI Tianyu²⁾, ZHAO Ningxin¹⁾, TU Yuxin¹⁾, GUAN Licong¹⁾, WANG Ruixiang¹⁾, XU Zhifeng³⁾, LIU Zhilou^{1)EE}

1) Jiangxi Provincial Key Laboratory of Green and Low Carbon Metallurgy for Strategic Non-ferrous Metals, Jiangxi University of Science and Technology, Ganzhou 341000, China

2) Heilongjiang ZiJin Copper Co., Ltd., Qiqihar 161000, China

3) Jiangxi College of Applied Technology, Ganzhou 341000, China

Corresponding author, E-mail: lzl8786489@163.com

ABSTRACT Sulfur dioxide (SO₂), found in the flue gas of nonferrous smelting, is an irritating and toxic gas that poses significant environmental pollution risks and results in the loss of valuable sulfur resources. China, as a major consumer of sulfur, faces a substantial shortage in domestic supply, relying heavily on imports. Capturing and recovering SO₂ in an environmentally friendly and safe way is crucial for the sustainable development of the industry. Ionic liquids (ILs) hold great promise for SO₂ capture and resource recovery owing to their unique chemical structures and physical properties, high stability, good controllability and strong recyclability. They offer innovative solutions for addressing air pollution and resource recycling and are expected to have widespread industrial applications, contributing significantly to environmental protection and sustainable resource utilization. Current research on ionic liquid desulfurization mainly focuses on the synthesis of new ionic liquids, their performance in SO₂ removal, and recyclability, with less

收稿日期:2024-05-10

基金项目:国家重点研发计划资助项目(2022YFC3901102);江西省双千计划资助项目(jxsq2023201087, jxsq2019201040);江西省杰出青年 基金资助项目(2022ZRYCL0020)

emphasis on the recycling of captured SO2. This study explores the SO2 absorption and conversion efficiency of the tetramethylguanidine acetate ([TMG]Ac) system by coupling the Claus reaction mediated by the ionic liquid absorber. Experimental results indicate that [TMG]Ac, prepared by acid-base neutralization, exhibits excellent SO₂ absorption capacity with a saturation adsorption capacity of 1.06 g at 20 °C and a SO₂ flow rate of 50 mL·min⁻¹, outperforming other absorbers with the same cation. By adding H₂S gas, the trapped SO₂ can be rapidly converted into sulfur at room temperature, achieving up to 99% conversion. The products from the Claus reaction were heated to sulfur's melting point, causing the sulfur to liquefy and aggregate, allowing it to separate from the absorbent. The sulfur products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray energy dispersive spectroscopy (EDS). These results indicated that the prepared sulfur product was S8, demonstrating that the [TMG]Ac ionic liquid, based on the Claus reaction, successfully produced sulfur. After four cycles, the [TMG]Ac absorbent maintained a consistent SO₂ conversion rate, absorbent mass, and SO₂ absorption capacity, indicating its stability and effectiveness. The absorbent exhibited excellent thermal stability and regenerability during the cycling process, indicating its capacity to be regenerated through the Claus reaction and reused as a recyclable absorbent for SO₂ capture. Using infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR) characterization methods, the mechanism of SO₂ absorption by [TMG]Ac was studied. The results indicate that the interaction among the amino groups on the cation of the absorbent and the hydrogen bonds on the anion is crucial for SO₂ capture. Finally, the transformation mechanism of SO₂ absorption was explored in aqueous and nonaqueous systems. This study not only provides the foundations for efficient ionic liquid desulfurization of ionic liquids but also explores the potential for SO₂ recycling, supporting sustainable and high-quality development in the nonferrous smelting industry.

KEY WORDS smelting flue gas; sulfur dioxide; tetramethylguanidine acetate ionic liquid; claus reaction; sulfur; resource recovery

有色金属含硫矿物高温冶炼过程中会产生大量二氧化硫 (SO₂)烟气^[1],而 SO₂的超额排放会产生大量酸雨,不仅会危害建筑及树木,还会损害人体身体健康^[2-3].与此同时,SO₂也是化工生产的重要原材料,它可用来生产硫酸、硫磺等常见化工用品^[4-5].因此有色冶炼烟气中 SO₂的绿色高效处理已经成为烟气净化的重点.

传统烟气脱硫有钙法、氨法、海水脱硫等^[6-9], 虽然应用十分广泛,但仍存在副产品利用率低、吸 收剂再生难、二次污染严重等问题,开发新型 SO₂ 吸附剂并实现循环再生的脱硫方法迫在眉睫.离 子液体 (IL)^[10-11] 由有机阳离子和有机/无机阴离子 组成,是一种在室温下呈液态的有机盐,它具有阴 阳离子可构造、绿色无污染、蒸汽压低、解析后可循 环使用的特点,是一种极其高效的脱硫剂.IL 的主 要脱硫原理^[12] 是利用其官能团和化学键对 SO₂ 气 体进行物理化学吸收,从而达到捕获 SO₂ 的目的.

目前,离子液体回收 SO₂后,主要用途是制备 硫酸,但硫酸在储存和运输过程中会产生较高的 维护成本且危险性较高,所以将 SO₂转化为稳定的 物质可以有效地解决此类问题.借助液相 Claus 反 应,将 SO₂转化为单质硫是实现 SO₂转化回收的一 项创新性研究^[13-15],其弥补了 IL 吸收 SO₂后硫资 源利用率低的问题,同时也降低了 SO₂解吸后制 酸或制气难储存、难运输的问题,并且解吸后的 IL 可循环使用,从宏观的角度上最大化降低了成 本投入.常规气相 Claus 反应有两步:一是 H₂S 燃 烧后生成 SO₂, 二是 SO₂ 与 H₂S 反应生成单质硫, 其反应途径如式 (1) 和 (2) 所示. 液相 Clause 反应 为在液相介质中 SO₂ 直接与 H₂S 反应形成单质硫 的过程, 其反应如式 (2) 所示.

$$2H_2S+3O_2 \rightarrow 2SO_2+2H_2O \tag{1}$$

$$2H_2S+SO_2 \rightarrow 3S+2H_2O \tag{2}$$

胍基离子液体因其室温可调控性被广泛应用 于气体吸收方面[14-15]. 现如今对胍基离子液体脱硫 的研究主要集中在离子液体的创新合成、脱除性 能及其循环使用方面^[16-18], 例如, Wu 等^[19] 通过理 论计算探究了四甲基胍乳酸盐 ([TMG]L)对 SO, 的吸收机理,研究发现 [TMG]L 主要以化学吸收捕 获 SO₂,该吸收剂在纯 SO₂气氛下,1g吸收剂能吸 收 0.519 g SO₂; Hou 等^[20] 向 [TMG]L 中添加乳酸, 发 现可以使解析后残留在离子液体中的 SO2 含量降 低,改善了该吸收剂循环性能; Wang 等^[21] 报道了 一种新型胍基离子液体四甲基胍四唑酸盐([TMG] [Tetz]), 其在低浓度 SO, 有着优异的捕获性能. 虽 然上述胍基吸收剂可以高效捕获 SO₂, 但都忽视了 吸收后的 SO,安全处置问题.对于吸收剂所捕获 的 SO₂,常采用高温加热和减压抽滤的方法^[22-24]将 其解吸出来,但此过程能耗较高,容易造成 SO₂ 泄 露,进而增加二次污染的风险.利用离子液体实现 硫资源的循环转化利用是有色金属行业绿色发展 的迫切需求,因此亟需找到一种高效利用 SO2 的 方法.

基于此,我们以高吸收高转化为导向,以 IL 为 介质,采用 SO₂ 捕获吸附和 H₂S 转化解吸的策略, 探究了四甲基胍醋酸盐 [TMG]Ac 的 SO₂ 吸收和转 化制备硫磺的能力.

1 实验部分

1.1 实验思路

图 1 为本文的实验思路示意图,主要的思路 为:(1) 先用吸收剂去捕获 SO₂,后得到含 SO₂ 的离 子液体吸收剂 (IL-SO₂);(2) 再将 H₂S 气体注入到 吸收 SO₂ 后的离子液体中,使其充分反应形成硫 磺;(3) 然后通过水洗过滤或加热到硫熔点以上的 方法,使硫单质与离子液体吸收剂分离;(4) 最后 将吸收剂中剩余水分除去,使离子液体得以循环 使用,并实现了硫资源的高效利用.

图 1 基于 Claus 反应的 SO₂转化为硫磺的示意图 Fig.1 Schematic diagram of SO₂ transformation to sulfur based on the Claus reaction

1.2 实验材料

SO₂(体积分数为 99.9%、英德市西洲气体有限 公司)、H₂S(体积分数为 99.9%、英德市西洲气体有 限公司)、N₂(体积分数为 99.9%,长沙高科气体有 限公司)、1,1,3,3-四甲基胍 [TMG](分析纯,上海麦 克林生化科技有限公司)、乙酸 (分析纯,西陇科学 股份有限公司),无水乙醇 (分析纯,西陇科学股份 有限公司),乙二醇 (分析纯,西陇科学股份有限公 司),水 (本实验所用均为纯水).

1.3 材料制备

取等摩尔量的 [TMG] 和乙酸分别溶解在适量的无水乙醇中,将得到的溶液分别加入到三颈烧

瓶和恒压漏斗中.打开恒压漏斗使其反应,反应在 冷水浴的条件下进行.反应后经旋转蒸发仪去除 水和有机溶剂,最终产物在60℃的真空下干燥48h 除去水分,得到淡黄色液体 [TMG]Ac.

1.4 实验装置

1.4.1 功能性离子液体对纯 SO₂ 的吸收

SO₂吸收实验在气体吸收管中进行,具体过程为:将含有 IL 或其溶剂混合物的气体吸收管浸没恒温水浴中,并设置需要的温度;将纯度为 99.9%的 SO₂ 气瓶连接玻璃转子流量计,以 50 mL·min⁻¹的流速通入 IL 吸收剂中;并用精度值为 0.1 mg、型号为 BSA224S-CW 的分析天平记录吸收管质量变化,通过吸收管重量变化来测定吸收剂的 SO₂ 吸收量.

1.4.2 SO₂转化和再生的测定

SO₂转化和再生的测定如图 2 所示.转化和再 生反应是在磨口玻璃气态反应管 (50 mL) 中进行 的,该反应管底部配有磁力搅拌器.反应管连接负 压真空瓶 (1 L),在反应室内装载一定量已吸收 SO₂ 的 IL 吸收剂,反应之前用 N₂ 检查整个系统装置的 气密性,以防气体逸出. 然后,将硫化氢 (略高于化 学计量比) 注入反应室至所需的压力下,开始克劳 斯反应.在一定的时间间隔内记录腔室的压力变 化. 当腔室的压力保持恒定不变时,表明 Clause 反 应已经达到平衡.

SO₂的转化率 (*C*, %) 可以反映硫磺的产率. 首 先通过称重法得到吸收剂中所含 SO₂的质量 (*m*₁, g), 然后根据式 (3) 计算出硫的理论产量 (*m*₂, g). 反 应结束后, 通过减压过滤分离固体硫和吸收剂. 滤 饼用纯水冲洗, 然后在 60 °C 下干燥至少 24 h, 最 终得到实际的硫磺产量 (*m*₃, g). 最后根据式 (4) 计 算得出 SO₂ 的转化率 (*C*, %).

$$m_2 = \frac{m_1}{64} \times 3 \times 32$$
 (3)

$$C = \frac{m_3}{m_2} \times 100\%$$
 (4)

2 结果与讨论

2.1 物理性质

离子液体自身物理性质在工业应用中起关键作用,所以测定了 [TMG]Ac 的密度和黏度.在293.15~343.15 K 的低温条件下,研究了 [TMG]Ac 的密度变化,结果如图 3(a) 所示,密度随温度的升高而下降.根据式 (5) 所示,拟合了 [TMG]Ac 离子液体的密度与温度的关系,计算得出 r²=0.999,证明了密

1—N₂ cylinder; 2—H₂S cylinder; 3—Rotor flowmeter; 4—Switch; 5—Vacuum bottle; 6—Pressure sensor; 7—Constant temperature magnetic mixing water bath; 8—Pressure resistant pipe; 9—Computer; 10—Exhaust gas absorption bottle

图 2 SO₂转化和再生实验示意图

Fig.2 Schematic diagram of SO₂ transformation and regeneration experiments

度和温度呈高度线性负相关.

$$\rho = a + bT \tag{5}$$

其中: ρ 为密度,g·cm⁻³;T为温度,K;a和b为调整 参数.

大多数功能化离子液体具有高黏度,损害了 吸收过程中的气体扩散和传质,阻碍了其在工业 中的大规模应用.在293.15~343.15 K的低温条件 下,根据阿伦尼乌斯定律拟合了吸收剂黏度和温 度之间的关系曲线,如图 3(b)所示.吸收剂的黏度 随温度的升高而降低,计算得出 r²=0.998.

$$\eta = \eta_0 \exp[E_a/(8.314T)]$$
 (6)

其中: η 为黏度, Pa·s; E_a 为活化能, J·mol⁻¹; η_0 是无限温度下的黏度, Pa·s.

通过对 [TMG]Ac 的密度和黏度测试可以发现, 在常温下, [TMG]Ac 的密度和黏度分别为 1.03 g·cm⁻³ 和 0.340 Pa·s, 均低于已被报道的四甲基胍基离子 液体^[25], 为 [TMG]Ac 离子液体的工业应用奠定了 基础.

2.2 SO2 吸收能力

在常压下, 探究了不同温度对 [TMG]Ac 吸收 SO₂ 的影响, 如图 4(a) 所示. 实验表明, 在 20 ℃下, 1 g [TMG]Ac 能捕获吸收 1.06 g SO₂. 在 30 ℃ 时, 1 g [TMG]Ac 能捕获吸收 0.86 g SO₂. SO₂ 的饱和吸收 量随着温度升高而降低, 这是因为 [TMG]Ac 吸 收 SO₂ 的过程是放热反应, 高温不仅不利于反应 的正向进行, 还会导致 SO₂ 在 [TMG]Ac 中的溶解 度降低^[26].

大多数离子液体黏度较高,很难传质,为节省 投入成本,工业上会采用添加溶剂的方法来稀释 吸收剂,从而改善离子液体的流动性^[27].从图 4(b) 和 (c)可以看出,加入溶剂后,[TMG]Ac 吸收 SO₂ 的量随之降低,且随 [TMG]Ac 质量分数减少而减 少.通过比较乙二醇 (EG)和水 (H₂O)对 [TMG]Ac 吸收 SO₂的影响,可以发现水作溶剂会大大降低 [TMG]Ac 的 SO₂ 吸收能力.添加 EG 虽然也会使 [TMG]Ac 的吸收量下降,但是和水相比,下降幅度 明显降低,这是因为 SO₂ 在 [TMG]Ac、EG 和 H₂O

图 4 不同因素对 SO₂ 吸收量的影响. (a) 温度; (b) 吸收剂中 H₂O 的质量分数; (c) 吸收剂中 EG 的质量分数; (d) SO₂ 体积分数 Fig.4 Effect of different factors on SO₂ absorption: (a) temperature; (b) mass fraction of H₂O in absorbent; (c) mass fraction of EG in absorbent; (d) SO₂ volume fraction

中的溶解度不同 ([TMG]Ac>EG>H₂O) 而导致的. 同时, 添加 EG 还能使 [TMG]Ac 活化, 为后续转化 SO₂ 提供实验基础. 为了贴合实际烟气中的 SO₂ 浓 度, 本实验将 SO₂ 和 N₂ 按照不同体积流量混合得 到了不同浓度的 SO₂ 烟气. 如图 4(d) 所示, 当吸收 温度为 30 ℃、吸收时间为 60 min、SO₂ 体积分数 为 10% 时, 1 g [TMG]Ac 能捕获吸收 0.32 g SO₂. 当 SO₂ 体积分数增加到 50 %, 1 g [TMG]Ac 能捕获吸 收 0.56 g SO₂.

2.3 液相 Claus 反应

2.3.1 克劳斯反应温度对 SO₂转化率的影响

为保证硫化氢过量,设定 H₂S 气体的初始压 力为 0.2 MPa,在此压力下探究了不同温度对 SO₂ 转化率的影响,如图 5(a)所示.在 20、30、40、50、 60 ℃下,SO₂转化率分别为92.99%、90.14%、89.75%、 88.18%、87.83%.随着温度的升高,SO₂的转化率 有所下降,证明了高温不利于液相克劳斯反应的 进行.首先,克劳斯反应是放热反应^[28],从实验中 也可以观察到,通入 H₂S 后反应管内温度的迅速 升高,而高温条件不利于放热反应的正向进行;其 次,温度越高,SO₂和 H₂S 在吸收剂中溶解度越低, 造成了二者在液相中的浓度减小,导致其不能充 分反应.

2.3.2 硫化氢初始压力对 SO₂转化率的影响

接着,本文进一步探究了 H_2S 初始压力对 SO_2 转化率的影响.如图所 5(b) 所示,在 30 °C 下, H_2S 初始压力分别为 0.05、0.1、0.15、0.2 MPa, 对应 SO_2 转化率分别为 58.36%、77.38%、94.58%、90.14%. 可以发现,当 H_2S 过量时,硫磺产率会有所减小. 这是因为,过量的硫化氢会促进硫磺向聚硫离子 (S_x^{2-}) 的转化,进而降低了 SO_2 的转化率^[29-31].实验 中未完全反应的 H_2S 气体可参加下一次克劳斯反 应循环利用,在实验结束后还可以将其捕获回收. 上述结果说明 Claus 反应过程中应该保持适量的 H_2S 初始压力,最佳的 H_2S 初始压力为 0.15 MPa. 2.3.3 不同溶剂组分含量对 SO_2 转化率的影响

基于乙二醇的溶剂效应,我们在功能化离子 液体中添加乙二醇降低吸收剂的粘度,减少传质 阻力.同时,乙二醇上的羟基能够活化离子液体. 因此,本节研究了是否添加乙二醇以及乙二醇含 量对克劳斯反应的影响.图 5(c)中分别列出了添 加乙二醇或水时的 SO₂转化率,可以看出,乙二醇 的添加与否对 SO₂转化率并没有太大影响,其 SO₂ 转化率维持在 95% 左右.然而,不添加乙二醇的离

子液体黏度较大,转化过程速率很慢,同时也会增加硫磺的分离难度,而添加乙二醇后 SO₂转化率明显升高,有利于 SO₂转化硫磺过程.当吸收剂含水时, SO₂转化率大幅度降低,只有 75% 左右.这是因为有水参与时, SO₂与水反应生成不稳定的亚硫酸^[32],从而导致了 SO₂转化率降低.

2.3.4 醋酸和 [TMG]Ac 的摩尔比对 SO₂转化率的 影响

图 5(d) 研究了添加不同醋酸量 (pH值) 对 SO₂ 转化率的影响. 研究发现, 当醋酸添加量与 [TMG]Ac 摩尔比为 0.3:1时, SO₂转化率高达 99%. 醋酸的 添加有利于提高 SO₂转化率, 这是因为吸收剂 pH 减少会使体系 SO₃²⁻含量降低^[33], Claus 反应更容易 进行. 但站在工业应用的角度上来讲, 醋酸添加量 不宜过多, 因为 SO₂ 为酸性气体, 添加过多醋酸会 抑制 SO₂ 吸收. 因此, 醋酸的添加量只有控制在一 个合理的区间内, 才能使得 SO₂转化率增加的同 时, 又保持较高的 SO₂ 吸收量. 综合 SO₂ 吸收和转 化效率, 最佳的醋酸与 [TMG]Ac 摩尔比为 0.1:1.

2.4 产物分离

由于硫磺具有黏滞性和疏松多孔性的特征, 导致在工业生产过程中硫磺极易发生堵塞,难以 通过冲洗过滤分离,所以亟需开发适合工业应用 的上分离方法.基于硫磺低熔点(119℃)和离子液 体高稳定性的物理特性,加之 Claus 反应会放出巨 大热量,我们提出加热升温分离硫磺的方法,将其 混合离子液体加热至硫磺熔点以上,使硫磺熔化 成液滴沉淀于反应器底部,冷却后可直接分离硫 磺和离子液体,具体如图 6 所示.熔化过滤法不仅 实现了硫磺的高效分离,且利用体系中反应产物 水分的挥发,还降低了后续纯化吸收剂的能耗.另 外,熔化过滤法所得固状硫磺较水洗过滤法所得 粉状硫磺便于储存运输,保证了低投入的同时,还 减少了安全性问题.水洗过滤和熔化过滤方法如 图 6 所示.

2.5 产物组成与形貌

2.5.1 产物 XRD 表征

克劳斯反应产物经分离干燥后,为确定产物 主要组成,本实验通过 X 射线衍射 (XRD) 表征方 法对 [TMG]Ac 或其溶剂体系下的分离产品进行物 质分析,结果如图 7 所示.从图 7 可知,所得产物 XRD 特征峰与斜方硫 (S₈)的标准卡片完全一致, 说明在离子液体介导下借助 Claus 反应可以成功 制备硫单质,且硫磺纯度较高,这一结果不仅证明

图 6 Claus 反应产物分离示意图. (a) 水洗过滤法; (b) 熔化过滤法

Fig.6 Schematic diagram of Claus reaction products: (a) water washing and filtration method; (b) melting and filtration method

图 7 不同溶剂体系下反应产物的 XRD 图谱

Fig.7 XRD diagram of the reaction products under different solvent systems

在离子液体吸收和转化 SO₂ 是可行且高效的,更 说明该方法可实现 SO₂的高值利用和吸附剂绿色 循环再生。

2.5.2 产物 SEM 表征

进一步采用扫描电子显微镜 (SEM) 分别分析 水洗过滤法和熔化过滤法所得硫磺的表面形貌分 布,结果如图 8 所示.图 8(a)~(d) 是水洗过滤法所 得硫磺的表观图,从图中可以发现水洗过滤法所 分离得到的硫磺颗粒较细,许多球形颗粒黏结在 一起,结合 X 射线能谱 (EDS) 能谱分析可以再进 一步证明硫磺的成功制备.图 8(e)~(h) 是熔化过 滤法所得硫磺的表观形貌图,从图中可知,粉状硫 磺高温熔化成固体后,表面光滑.表1为采用两种 分离方法所得硫磺产物的化学分析结果,从表1 中可以看出,相对于水洗过滤法,熔化过滤法得到 的硫磺的纯度更高,可达 99.31%,这也进一步说明 了熔化过滤法的科学性和实用性.同时,硫磺产物 中 C 和 H 的含量极低,这说明熔化过滤法不会包 裹离子体.

2.6 吸收剂循环再生

反应产物经熔化过滤后,可继续参与下一次 循环再生,其硫磺产率和吸收剂质量随再生次数 的变化如图 9(a) 所示.从图中可以发现,吸收剂进行 4次重复循环后, SO₂仍然保持在 90% 以上,并且 吸收剂的质量没有发生明显变化.此外,如图 9(b) 所示,4次循环过程中,离子液体对 SO₂的吸收量 均维持在 0.8 g 以上.上述结果说明,离子液体吸收 剂在循环过程中展现了优异的热稳定性和可再生 性,这也再次说明了吸收剂可以通过 Claus 反应再 生,并作为可回收的吸收剂进行 SO₂ 捕获.

3 机理表征

3.1 [TMG]Ac 捕获 SO₂ 机理

为了探究 [TMG]Ac 捕获 SO₂ 的机理,本实验 采用核磁共振氢/碳谱法 (¹H/¹³C NMR) 和傅里叶红 外光谱法 (IR) 对吸收 SO₂ 前后以及经 Claus 解析 并蒸干水分之后的 [TMG]Ac 进行了表征分析,如 图 10 所示. 从图 10(a) 中可以发现,吸收 SO₂ 后,在 化学位移 (δ) 分别为 5.08×10⁻⁶ 和 7.74×10⁻⁶ 发现了 2 个新峰,归因于 S—O—H 和 S=O…H, 阳离子上

图 8 两种分离方法所得硫磺 SEM 和 EDS 图. (a)~(d)水洗过滤法; (e)~(h) 熔化过滤法

Fig.8 SEM and EDS diagrams of sulfur obtained using two separation methods: (a) ~ (d) water washing and filtration method; (e) ~ (h) melting and filtration method

表1 两种分离方法所得硫磺产物的元素含量

Samples	Elemental mass fraction/%			
	С	Н	0	S
Powdered sulfur	0.05	0.07	3.39	96.49
Solid sulfur	0.02	0.04	0.63	99.31

的胺基被磺化^[34],说明吸收剂和 SO₂ 之间存在化 学吸收.化学位移向后偏移 (1.92→2.04),表明发生 了氢键相互作用,说明也存在物理吸收.解析后出 现的所有新峰全部消失,向后偏移的峰也回归原 位,表明 [TMG]Ac 成功解吸,解吸后的 IL 可进行 下一次循环.图 10(b)有两处化学位移向前偏移 (24.11→20.99和178.43→174.65),解析后消失,也印 证了上述猜想.从图 10(c)中可以发现吸收 SO₂后, 在波数为 660 cm⁻¹和 1258 cm⁻¹处出现了新的吸收 带,分别属于硫酸盐 S=O 剪接弯曲振动和不对称 拉伸振动^[35].在波数为 1716 cm⁻¹和 1600 cm⁻¹处的 两个峰是由于 [TMG]Ac 吸收 SO₂后 CO 和 CN 的 振动,表明少量的 IL 逆转为胺和酸^[36].上述结果表 明借助 Claus 反应,可以实现硫资源回收和吸收剂 的循环再生.

Fig.9 Multiple cycles of absorbent regeneration: (a) SO₂ conversion rate and absorbent quality change diagram; (b) SO₂ absorption diagram

Fig.10 Diagram of [TMG]Ac before and after SO₂ absorption: (a) ¹H NMR; (b) ¹³C NMR; (c) IR

3.2 SO₂转化机理

为了使 SO₂ 高效利用,本实验采用有价物质转 化回收的方法,往吸收 SO₂ 后的吸收剂中鼓入 H₂S 气体,使其转变为硫磺,其主要方程式如(7)所示.

 $[TMG]Ac-SO_2+2H_2S=3S+3H_2O+[TMG]Ac \quad (7)$

在 2.3.3 中,可以发现水的加入会降低离子液 体水溶液中 SO₂ 的转化率. 然而,水在工业应用中 是不可避免的,它对功能性离子液体的吸收和再 生阶段有一定的影响. 根据文献报道^[37-39], IL 水溶 液中吸收的 SO₂ 主要以亚硫酸、HSO₃和SO₃²⁻的形 式存在. 克劳斯反应在离子液体有水和无水条件 下的反应机理有所不同,方程式如式 (8~10)所示. 有水参与时, SO₂ 遇水反应生成亚硫酸,亚硫酸和 四甲基胍醋酸盐反应产生HSO₃,而HSO₃极难与 H₂S 反应生成 S. 三种物质氧化性顺序为: 亚硫酸> HSO₃>SO₃²⁻,分别与它们的标准还原电位 0.45V、 -0.19V和-0.90V排序一致. 克劳斯反应是一种氧 化还原反应, SO₂的转化直接受其氧化性的影响.

$$SO_2+H_2O=H_2SO_3$$
 (8)

 $H_2SO_3 + [TMG]Ac = [TMG][HSO_3] + HAc \qquad (9)$

 $[HSO_3]^- + 2H_2S + H^+ = 3S + 3H_2O$ (10)

4 结论

基于传统离子液体吸收剂所捕获的 SO₂ 利用 率低的问题,本研究借助 Claus 反应将 SO₂ 转化为 有价物质硫磺,并实现了吸收剂的循环再生,重点 研究了液相 Claus 反应条件对硫磺产率的影响,得 到了最佳工艺条件,并通过相关表征揭示了 [TMG]Ac 吸收剂捕获和转化 SO₂ 的机理,得出了以下主要 结论:

(1) 在常温常压下,采用简单的酸碱中和反应 得到了 [TMG]Ac 吸收剂,1g [TMG]Ac 吸收剂能捕 获 1.06 g SO₂.

(2) 在 30 ℃ 下, H₂S 的初始压力为 0.15 MPa 时, 在 [TMG]Ac 的介导下 SO₂ 可以高效转化为硫单 质, SO₂转化率高达 94.58%. 升高反应温度不利于 硫磺的生成, 温度越高, SO₂转化率越低; 在乙二醇 溶剂体系下进行的 SO₂转化率基本不变, 而水溶 剂体系下硫磺产率急剧下降; 往纯 [TMG]Ac 中添 加醋酸可以提高硫磺产率, 产率高达 99.15%.

(3)确定了熔化过滤法为分离硫磺的方法,该 方法不仅解决了工业上硫磺堵塞容器的问题,还 减少了常规水洗过滤所带来的后续成本投入. (4) NMR 和 IR 结果表明, 吸收剂阳离子上的 胺基和阴离子上的氢键作用是捕获 SO₂ 的关键, 经过四次循环后吸收剂性能没有发生明显变化, 这表明了 [TMG]Ac 优异的循环性能.

参考文献

- [1] Chen H Z, He H X, Wan Y M, et al. Research progress on coal-fired flue gas desulfurization technology. *Inorg Chem Ind*, 2019, 51(5):6
 (陈欢哲,何海霞,万亚萌,等. 燃煤烟气脱硫技术研究进展. 无机盐工业, 2019, 51(5):6)
- [2] Lu Y, Jin Q J, Ji W Y, et al. Resource utilization of high concentration SO₂ for sulfur production over La–Ce-Ox@ZrO₂ composite oxide catalyst. *J Rare Earths*, 2023, 41(12): 1945
- [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in iron and steel industry. *Chin J Eng*, 2018, 40(7): 767
 (闫伯骏, 邢奕, 路培, 等. 钢铁行业烧结烟气多污染物协同净化

技术研究进展.工程科学学报,2018,40(7):767)

- [4] Chen Y, Hu T D, Liu Y L, et al. Research progress on chemical resourse utilization of sulfur dioxide. *Chin J Appl Chem*, 2022, 39(2): 223
 (陈颖, 胡天丁, 刘云利, 等. 二氧化硫在化学资源化利用中的研究进展. 应用化学, 2022, 39(2): 223)
- [5] Zhang Q, Guo N X, Tan X Z, et al. Sulfur's chemical recycle out of hydrometallurgical slag. Nonferrous Met Sci Eng, 2013, 4(1):
 40
 (会書 前年詳 調系的 第 現社的合法由路的化於回收 五角

(章青, 郭年祥, 谭秀珍, 等. 湿法冶金渣中硫的化学回收. 有色 金属科学与工程, 2013, 4(1): 40)

- [6] Qi Y B, Tang C Z, Jia H L. Development status and research progress of wet desulfurization technology for industrial flue gas. *Mater Rep*, 2022, 36(Sup 1): 88
 (齐亚兵, 唐承卓, 贾宏磊. 工业烟气湿法脱硫技术的发展现状 及研究新进展. 材料导报, 2022, 36(增刊1): 88)
- [7] Liu J J, Su W, Xing Y, et al. Preparation and regeneration performance of modified semi-carbon for flue gas SO₂ adsorbent. *Chin J Eng*, 2021, 43(2): 223
 (刘俊杰, 苏伟, 邢奕, 等. 改性兰炭烟气 SO₂ 吸附材料的制备及 其再生性能. 工程科学学报, 2021, 43(2): 223)
- [8] Pan Z C, Jiao F, Qin W Q, et al. Research progress on comprehensive utilization of flue gas desulfurization gypsum and gypsum slag in smelting industry. *Chin J Nonferrous Met*, 2022, 32(5): 1391
 (潘祖超, 焦芬, 覃文庆, 等. 烟气脱硫石膏与冶炼行业石膏渣综合利用研究进展. 中国有色金属学报, 2022, 32(5): 1391)
- [9] Deng G F, Jiang K, Cao X, et al. Reduction of SO₂ to elemental sulfur over rare earth-iron catalysts. *J Rare Earths*, 2009, 27(5): 744
- [10] Tao H, Shi G L, Jiang L L, et al. Tuning the anion for ultrahigh

and selective adsorption of low-concentration SO₂ by functionalized ionic porous organic polymers. *Sep Purif Technol*, 2024, 333: 125974

- Siami H, Razmkhah M, Moosavi F. Cation functional group effect on SO₂ absorption in amino acid ionic liquids. *Front chem*, 2023, 11: 1113394
- [12] Wan Z X, Zhang T K, Liu Y Z, et al. Enhancement of desulfurization by hydroxyl ammonium ionic liquid supported on active carbon. *Environ Res*, 2022, 213: 113637
- [13] Huang K, Feng X, Zhang X M, et al. The ionic liquid-mediated Claus reaction: A highly efficient capture and conversion of hydrogen sulfide. *Green Chemy*, 2016, 18(7): 1859
- [14] Zhang Q, Hou Y C, Ren S H, et al. Efficient regeneration of SO₂-Absorbed functional ionic liquids with H₂S via the liquid-phase Claus reaction. ACS Sustainable Chem Eng, 2019, 7(12): 10931
- [15] Zhao T X, Liang J, Zhang Y T, et al. Unexpectedly efficient SO₂ capture and conversion to sulfur in novel imidazole-based deep eutectic solvents. *Chem Commun*, 2018, 54(65): 8964
- [16] Gabriele B, Della Ca' N, Mancuso R, et al. Amidine-and guanidine-based synthetic methods for CO₂ capture and utilization. *Curr Opin Green Sustain Chem*, 2023, 41: 100793
- [17] Chen C, Zhang Y K, Li Q H, et al. Guanidine-embedded poly(ionic liquid) as a versatile precursor for self-templated synthesis of nitrogen-doped carbons: Tailoring the microstructure for enhanced CO₂ capture. *Fuel*, 2022, 329: 125357
- [18] Wang B R, Lin L, Ren S H, et al. Specific heat capacity of nonfunctional and functional ionic liquids during the absorption of SO₂. *Ind Eng Chem Res*, 2021, 60(37): 13740
- [19] Wu C C, Lü R Q, Gates I D. Computational study on the absorption mechanisms of SO₂ by ionic liquids. *ChemistrySelect*, 2018, 3(16): 4330
- [20] Hou Y C, Zhang K, Gao M J, et al. Universal method for energysaving absorption of SO₂ with absorbents adjusted by lactic acid. *Energy Fuels*, 2020, 34(3): 3976
- [21] Wang Y, Ren S H, Hou Y C, et al. Capture and catalytic reduction of SO₂ with H₂ to elemental sulfur by novel guanidinium-based deep eutectic solvents. *Ind Eng Chem Res*, 2023, 62(36): 14568
- [22] Jiang L L, Mei K, Chen K H et al. Design and prediction for highly efficient SO₂ capture from flue gas by imidazolium ionic liquids. *Green Energy Environ*, 2022, 7(1): 130
- [23] Liu P, Cai K X, Zhang X M, et al. Effective absorption of SO₂ by imidazole-based protic ionic liquids with multiple active sites: Thermodynamic and mechanical studies. *AIChE J*, 2022, 68(4): 17596
- [24] Liu M, Liu P; Han H B, et al. Deep eutectic solvents consisting of a dicationic ionic salt with multiple active sites and ethylene glycol derivatives for reversible SO₂ absorption. *Energy Fuels*, 2024, 38(1): 576
- [25] Meng X C, Wang J Y, Xie P T, et al. Structure and SO₂ absorptionproperties of guanidinium-based dicarboxylic acid ionic

liquids. Energy Fuels, 2018, 32(2): 1956

- [26] Jiang Y T, Chen Y F, Yang F L, et al. Efficient SO₂ removal using aqueous ionic liquid at low partial pressure. *Chin J Chem Eng*, 2023, 58: 353
- [27] Li R L, Zheng Y Y, Zhao X X, et al. Recent advances in biomass pretreatment using biphasic solvent systems. *Green Chem*, 2023, 25(7): 2505
- [28] Li P, Wang X D, Zhao T X, et al. Deep eutectic solvents formed by EmimCl plus lactams: Effective SO₂ capture and conversion into sulphur via DESs-mediated Claus process. *Chem Eng J*, 2021, 422: 130033
- [29] Li X H, Deng R R, Li Y, et al. Application of additives for the electrodeposition of metals and alloys from ionic liquids. *Chin J Eng*, 2024, 46(4): 657
 (李秀湖,邓蓉蓉,李艳,等. 添加剂在离子液体电沉积金属及合金中的应用. 工程科学学报, 2024, 46(4): 657)
- [30] Cheng Q, Xu W H, Qin S Y, et al. Full dissolution of the whole lithium sulfide family (Li₂S₈ to Li₂S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries. *Angew Chem*, 2019, 131(17): 5613
- [31] Lu H, Chen Z, Du H L, et al. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. *Ionics*, 2019, 25(6): 2685
- [32] Ren S H, Hou Y C, Wu W Z, et al. Effect of H₂O on the desulfurization of simulated flue gas by an ionic liquid. *Ind Eng Chem Res.* 2009, 48(10): 4928
- [33] Zhang Q. Research on Functionalized Ionic Liquid Regeneration Based on Klaus Reaction [Dissertation]. Beijing: Beijing University of Chemical Technology (张琪. 基于克劳斯反应的烟气脱硫功能化离子液体再生的研 究[学位论文]. 北京: 北京化工大学, 2020)
- [34] Wu W Z, Han B X, Gao H X, et al. Desulfurization of flue gas:
 SO₂ absorption by an ionic liquid. *Angew Chem Int Ed*, 2004, 43(18): 2415
- [35] Geng Z Y, Ma S Y, Li Y H, et al. Guanidinium-based ionic liquids for high-performance SO₂ capture and efficient conversion for cyclic sulfite ester. *Ind Eng Chem Res*, 2022, 61(13): 4493
- [36] Carlesi C, Guajardo N, Schrebler R, et al. The capture of a dilute stream of industrially generated sulfur dioxide in an aqueous solution of the ionic liquid 1-butyl-3-methylimidazolium chloride [bmim][Cl]. *Chem Eng Commun*, 2020, 207(11): 1591
- [37] Tian S D, Hou Y C, Wu W Z, et al. Absorption of SO₂ by thermalstable functional ionic liquids with lactate anion. *RSC Adv*, 2013, 3(11): 3572
- [38] Zhao J H, Ren S H, Hou Y C, et al. SO₂ absorption by carboxylate anion-based task-specific ionic liquids: Effect of solvents and mechanism. *Ind Eng Chem Res*, 2016, 55(50): 12919
- [39] Hou Y C, Zhang Q, Gao M J, et al. Absorption and conversion of SO₂ in functional ionic liquids: Effect of water on the Claus reaction. *ACS Omega*, 2022, 7(12): 10413