相界面与马氏体转变理论

Phase Interface and Martensitic Transformation

  • 摘要: 试图把马氏体转变的晶体学唯象理论与动力学唯象理论联系起来,建立一个以相界面推移为核心的马氏体转变理论。此界面的本质可表示为一特征张量,即马氏体转变的平面不变应变张量。把界面看作弹塑性薄层,则特征张量作为应变所对应的弹塑性能(功),即为界面推移的摩擦函数中的准焓;此界面(不变面)一般不是有理面,应由低指数小晶面曲折构成,构成方式的数量的总和,组成摩擦函数的准熵。因此,界面的推移,将表现出马氏体转变中已知的动力学行为(可逆性、热滞等)。

     

    Abstract: This paper unifies the phenomenological theory of crystallography and that of kinetics, and builds a new theory based on the phase interface motion for the martensitic transformations. The interface can be described with a characteristic tensor, which is the invariant plane strain. Thus, the motion of this interface will transform the parent phase to martensite,conforming to all regulations of the crystallography such as habit plane, orientation, etc. On the other hand, the interface can be taken as an elastic and plastic layer. The characteristic tensor, functioning as strain, corresponds to certain elastic and plastic energy (work), which is exactly the friction quasi-enthalpy in the friction function during the interface moving. The interface, i.e. the invariant plane, usually is not a rational plane and is consisted of various low index facets. The number of the configuration of the facets consists the configuration entropy of the interface, which is exactly the friction quasi-entropy in the friction function. Thus, the motion of the interface will show all the kinetic behaviors such as reversibility and hysteresis during the marten-sitic transformations.

     

/

返回文章
返回