神经网络应用于烧结矿质量在线推断
On-line Inference of Sintering Quality via Neural Networks
-
摘要: 针对烧结过程生产实际,运用神经网络中的BP学习算法设计了分类器,用于在线推断烧结矿的质量。为了加快BP学习算法的收敛速度,采用了自适应变步长学习算法。实验结果表明,由此建立的烧结过程神经网络质量预报模型,预报正确率高,具有很好的泛化能力。Abstract: Presents a new method of on-line inference of sintering quality. Neural networks to build the sinternig quality inference model are used. To speed the learning, a fast BP learning algorithm with adaptive variable step size via linear reinforcement is presented.The experiment result is satisftory, and this method may be used widely in other complicated production proasses.
下载: