求解TSP问题的一种基于信息素的遗传交叉算子

Pheromone-based crossover operator of genetic algorithm for the traveling salesman problem

  • 摘要: 提出了求解TSP问题的一种新的基于信息素的遗传交叉算子,并对算子构造子个体的过程进行了实验分析.在生成子个体时,基于信息素的遗传交叉算子不仅能够利用包括边长度和邻接关系在内的局部信息,还可以利用以信息素形式保存的全局信息.在纯遗传算法框架内,利用TSP基准算例对所提出的交叉算子的性能进行了实验测试.结果表明,该算子在精度和收敛速度上均优于其他知名的交叉算子.

     

    Abstract: A new pheromone-based crossover operator of genetic algorithm for the traveling salesman problem was proposed, and the working process of the operator was analyzed when constructing offspring. When constructing offspring, the proposed operator utilizes both local and global irdormation. The local information includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. The proposed operator was tested in a pure genetic algorithm framwork using the TSP benchmark instances. Experimental results show its better performance in both of speed and accuracy than other well known crossover operators.

     

/

返回文章
返回