不同表面处理条件下身管烧蚀研究

Study on erosion of gun barrels with different surface treatments

  • 摘要: 通过模拟发射试验对表面镀铬、氮碳共渗两种表面处理条件下的身管进行了烧蚀模拟测试,研究在模拟工况下身管烧蚀情况.镀铬身管由于镀铬层固有的脆性,且受到高温高压火药气体的冲击作用,铬层内易产生显微裂纹,裂纹扩展至铬层与基体界面处,并沿着镀层与基体界面扩展,从而导致镀层剥落.氮碳共渗身管在烧蚀过程中,表面产生大量较深且较宽的裂纹,裂纹直接贯穿到基体使基体严重地被火药燃烧气体腐蚀,从而导致身管失效.在上述研究基础上,提出了两种不同处理方式下身管的失效模式.

     

    Abstract: The erosion characteristics of chromium-plated and nitrocarburized gun barrels were studied by erosion simulation test. It is shown that microcracks form in the brittle chromium plate when the chromium-plated barrel is exposed to high pressure and high temperature propellant gases. The cracks extend and end at interfaces between the coating and steel substrate. The propagation of the cracks can lead to brittle delamination of the chromium plate. In the nitrocarburized gun barrel, many wide and deep cracks form in the bore surface. The cracks penetrate through the nitrocarburized layer into the steel substrate, resulting in serious erosion of the steel substrate by combustion flow and causing the barrel failed. Based on experimental results, failure modes are proposed for erosion of gun barrels with the different surface treatments.

     

/

返回文章
返回