Abstract:
The influences of stress ratio, single overload and high-low loading sequence on the fatigue crack growth of Z3CN20-09M cast austenitic stainless steels were studied with compact tension specimens. When the stress intensity factor range is identical, the fatigue crack growth rate increases with the increase of stress ratio. During single overload, the fatigue crack growth rate shows a short period of acceleration followed by a significant decrease, leading to subsequent crack growth retardation. Similarly, high-low loading sequence with the maximum load in the second step lower than that in the first loading step results in significant crack growth retardation in the second loading step. A two-parameter model and Wheeler's model are found to predict well the crack growth behavior under constant-amplitude loading and variable-amplitude loading, respectively.