基于局部宏观特征和微观特征结合的手背静脉身份识别
Hand-dorsa vein identification based on local macroscopic and microscopic characteristics
-
摘要: 手背静脉身份识别由于其非接触和不易被污染等独特的优势,已成为各种新型生物特征识别手段中的研究和应用热点.如何提取具有高鉴别性且鲁棒的手背静脉图像特征是本文的研究重点.本文简述了基于局部二值模式(local binary pattern,LBP)的特征提取方法及其改进方法的基本原理,讨论分析了其不足,并针对不足,提出了一种多尺度块中心对称局部二值模式(multi-scale block center-symmetric LBP,MB-CSLBP)算子.本文所提出的MB-CSLBP算子既考虑图像的局部宏观特征,也兼顾图像的微观特征,获取了更加全面的图像信息.在自建的2040幅近红外手背静脉图像数据库中,用MB-CSLBP方法获取图像特征并使用最近邻分类器进行识别.大量的对比实验结果表明,本文所提方法的识别率达到98.21%,优于原始LBP及其改进算子,中心对称局部二值模式(center-symmetric LBP,CS-LBP)和多尺度块局部二值模式(multi-scale block LBP,MB-LBP)等.Abstract: As hand-dorsa vein identification is non-contact,not easily polluted,and has other unique advantages,it becomes a new research and application hotspot of biometric identification methods. The focus of this paper is how to extract hand-dorsa vein image characteristics with high identification rate and robustness. This paper briefly describes the basic principle of local binary pattern(LBP) and improved LBP methods,and analyzes the disadvantages of these methods. A novel method called multi-scale block centersymmetric LBP(MB-CSLBP) is proposed. It includes not only the image's microstructures but also macrostructures,which can give more information of the image. This method is tested on a database of 2040 near-infrared hand-dorsa vein images using MB-CSLBP features and a nearest neighbor classifier. A large number of experimental results show that the proposed method offers a better recognition result of 98.21%,outperforming the original LBP and improved LBP operators,such as CS-LBP and MB-LBP.