基于模糊保险箱的人脸-人耳融合模板保护

Face and ear fusion template protection based on fuzzy vaults

  • 摘要: 鉴于人脸与人耳两种生物特征在图像获取上的相似性以及生理位置上的互补性,提出一种人脸-人耳多模态融合模板保护方法,将两者在特征层进行融合,然后利用模糊保险箱算法对融合模板进行保护.该方案基本流程分为五部分:图像预处理、Gabor-PCA特征提取、特征融合、融合模板加密以及融合模板解密.在由ORL人脸库和USTB人耳库3构成的人脸-人耳多模态图像库上的认证实验结果表明所提模板防护方法的有效性,且基于融合模板保护的认证结果比基于单模板保护的认证结果在识别率和误识率上均有所优化.

     

    Abstract: Due to biological characteristic similarity in image acquisition and physiological complementarity of the face and the ear, a face and ear multimodal fusion template protection method was proposed, in which the face and the ear were combined in the feature level and then a fuzzy vault was utilized to protect the fusion feature template. The basic flow of the scheme was divided into 5 parts:image preprocessing, Gabor-PCA feature extraction, feature fusion, fusion template encryption, and fusion template decryp-tion. On the multimodal image dataset consisted of the ORL face dataset and the USTB ear dataset 3, authentication experimental re-sults show the effectiveness of the proposed fusion template protection method. Also the fusion template protection method outperforms the unimodal template protection method on both genuine accept rate and false accept rate.

     

/

返回文章
返回