• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

高性能锂离子电池负极材料一氧化锰/石墨烯复合材料的合成

苗小飞, 刘永川, 张祥昕, 陈素晶, 陈远强, 张易宁

苗小飞, 刘永川, 张祥昕, 陈素晶, 陈远强, 张易宁. 高性能锂离子电池负极材料一氧化锰/石墨烯复合材料的合成[J]. 工程科学学报, 2017, 39(3): 407-416. DOI: 10.13374/j.issn2095-9389.2017.03.013
引用本文: 苗小飞, 刘永川, 张祥昕, 陈素晶, 陈远强, 张易宁. 高性能锂离子电池负极材料一氧化锰/石墨烯复合材料的合成[J]. 工程科学学报, 2017, 39(3): 407-416. DOI: 10.13374/j.issn2095-9389.2017.03.013
MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. DOI: 10.13374/j.issn2095-9389.2017.03.013
Citation: MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. DOI: 10.13374/j.issn2095-9389.2017.03.013

高性能锂离子电池负极材料一氧化锰/石墨烯复合材料的合成

基金项目: 

国家自然科学基金青年基金项目(51602310);福建省科学技术资助项目(2014H2008);福建省重点引导性资助项目(2015H0052,2016H0047)

详细信息
  • 分类号: TM912.9

Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries

  • 摘要: 通过冻干-煅烧合成了一氧化锰/石墨烯(MnO/rGO)复合材料,并将其用作锂离子电池负极材料.在500 mA·g-1的电流密度下,MnO/rGO复合材料表现出高达830 mAh·g-1的可逆容量,且在充放电循环160圈后,其可逆容量依然高达805 mAh·g-1.倍率测试结果显示,循环225圈后,在2.0 A·g-1的电流密度下,其可逆容量高达412 mAh·g-1.复合材料中的石墨烯在提高材料导电性的同时有效地缓解了一氧化锰充放电过程中的体积膨胀.通过对比容量-电压的微分分析,发现复合材料超出一氧化锰理论容量的部分是由形成了更高价态的锰引起的.MnO/rGO复合材料比纯一氧化锰(p-MnO)更容易出现高价态的锰,可能是因为rGO上残留的氧为电极反应提供了额外所需的氧源.该一氧化锰/石墨烯复合材料因其简单绿色的合成过程及优异的电化学性质,有望在未来的锂电负极中得到广泛的实际应用.
    Abstract: MnO/reduced graphene oxide (MnO/rGO) composites synthesized through freeze-drying following annealing were used as anode materials for lithium ion batteries. At 500 mA·g-1, the MnO/rGO composite exhibits a reversible capacity as high as 830 mAh·g-1 and the specific capacitance remains at 805 mAh·g-1 after 160 discharge/charge cycles, demonstrating excellent cycling stability. It also shows good rate capacities and delivers a specific capacity of 412 mAh·g-1 at 2. 0 A·g-1 after 225 cycles at different rates. The rGO increases the electrical conductivity and provides space to accommodate the volume expansion of MnO during charge/discharge. The extra capacity, over the theoretical value of MnO, is attributed to the formation of higher oxidation state manganese according to the charge-voltage derivative analysis of the galvanostatic charge-discharge curves. A higher tendency to further oxidize Mn(Ⅱ) in the MnO/rGO composite maybe result in the extra oxygen source provided by rGO during the electrode reaction. The simple and green synthetic protocol and the excellent electrochemical performance demonstrate the great potential of the MnO/rGO composite anode in large scale production and applications.
  • [1]

    Evarts E C. Lithium batteries:To the limits of lithium. Nature, 2015, 526(7575):S93

    [2]

    Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113(7):5364

    [3]

    Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc, 2004, 151(11):A1878

    [4]

    Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun, 2009, 11(4):791

    [5]

    Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the lowpotential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc, 2002, 149(9):A1212

    [6]

    Zhong K F, Xia X, Zhang B, et al. MnO powder as anode active materials for lithium ion batteries. J Power Sources, 2010, 195(10):3300

    [7]

    Fang X P, Lu X, Guo X W, et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun, 2010, 12(11):1520

    [8]

    Zang J, Qian H, Wei Z K, et al. Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochim Acta, 2014, 118:112

    [9]

    Wang T Y, Peng Z, Wang Y H, et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci Rep, 2013, 3:2693

    [10]

    Sun X F, Xu Y L, Ding P, et al. The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. J Power Sources, 2013, 244:690

    [11]

    Qiu D F, Ma L Y, Zheng M B, et al. MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Mater Lett, 2012, 84:9

    [12]

    Mai Y J, Zhang D, Qiao Y Q, et al. MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources, 2012, 216:201

    [13]

    Zhang K J, Han P X, Gu L, et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(2):658

    [14]

    Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1(1):107

    [15]

    Srivastava M, Singh J, Kuila T, et al. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale, 2015, 7:4820

    [16]

    Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183

    [17]

    Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene. Chem Rev, 2009, 110(1):132

    [18]

    Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials:A review. J Power Sources, 2013, 240:66

    [19]

    Yang M, Zhong Y R, Zhou X L, et al. Ultrasmall MnO@Nrich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A, 2014, 2:12519

    [20]

    Xu G B, Jiang F, Ren Z A, et al. Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceram Int, 2015, 41(9):10680

    [21]

    Zou B K, Zhang Y Y, Wang J Y, et al. Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochim Acta, 2015, 167:25

    [22]

    Sun Y M, Hu X L, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23(19):2436

    [23]

    Zhao G X, Huang X B, Wang X K, et al. Synthesis and lithiumstorage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(vi) to Mn(ii) by the reducing power of graphene oxide. J Mater Chem A, 2015, 3(1):297

    [24]

    Petnikota S, Srikanth V V S S, Nithyadharseni P, et al. Sustainablegraphenothermal reduction chemistry to obtain MnO nanonetwork supported exfoliated graphene oxide composite and its electrochemical characteristics. ACS Sustainable Chem Eng, 2015, 3(12):3205

    [25]

    Zhang S, Zhu L X, Song H H, et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy, 2014, 10:172

    [26]

    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8):4806

    [27]

    Campos-Delgado J, Romo-Herrera J M, Jia X T, et al. Bulk production of a new form of sp2 carbon:crystalline graphene nanoribbons. Nano Lett, 2008, 8(9):2773

    [28]

    Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphite oxide. Nat Chem, 2009, 1:403

    [29]

    Moulder J F. Handbook of X-Ray Photoelectron Spectroscopy:A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Eden Prairie:Physical Electronics, 1995

    [30]

    Hsieh C T, Lin C Y, Lin J Y. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Liion batteries. Electrochim Acta, 2011, 56(24):8861

    [31]

    Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem, 2006, 16:155

    [32]

    Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 2006, 110(17):8535

    [33]

    Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials:Case study of RuO2. Adv Mater, 2008, 20(3):501

    [34]

    Xia Y, Xiao Z, Dou X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithiumion batteries. ACS Nano, 2013, 7(8):7083

    [35]

    Zhong K F, Zhang B, Luo S H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources, 2011, 196(16):6802

    [36]

    Luo W, Hu X L, Sun Y M, et al. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl Mater Interfaces, 2013, 5(6):1997

    [37]

    Cao K Z, Jiao L F, Xu H, et al. Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv Sci, 2016, 3:1500185

计量
  • 文章访问数:  1144
  • HTML全文浏览量:  328
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-16
  • 刊出日期:  2017-03-24

目录

    /

    返回文章
    返回