A micromechanically motivated uncoupled model for ductile fracture prediction
-
摘要: 在韧性断裂中微观孔洞演化机制的基础上,提出了一个基于孔洞演化机制的非耦合型韧性断裂预测模型.模型充分考虑了两种典型的孔洞演化机制:孔洞的长大机制和孔洞的拉长扭转机制.该模型引入了三个具有不同物理意义的材料参数:材料对不同孔洞演化机制的敏感度、应力状态敏感度系数和材料的损伤阈值,并使用等效塑性应变增量表征其对韧性损伤累积过程的驱动作用.为了使模型可以更好地反映三维应力状态对材料韧性断裂性能的影响,将该模型从主应力空间转换到由应力三轴度、罗德参数和临界断裂应变构成的三维空间,得到了由模型确定的三维韧性断裂曲面,并研究了相关参数对三维韧性断裂曲面及平面应力二维韧性断裂曲线的影响.利用5083-O铝合金、TRIP690钢和Docol 600DL双相钢三个典型的轻质高强板材的韧性断裂数据验证了该模型对不同材料和不同应力状态的适用性和准确性.Abstract: This paper is a contribution to the ductile fracture prediction by the proposal of a new uncoupled ductile fracture criterion. In the new criterion, two typical void deformation models were carefully considered, with the plastic strain increment regarded as a key impetus of the damage evolution and its accumulation. The new ductile fracture criterion was constructed with three model parameters with different physical meanings. A 3D ductile fracture surface model was obtained by transforming the proposed criterion from stress space to the space of stress triaxiality, Lode parameter, and fracture strain, and a parametric study was carried out to better understand their effects. To validate the performance of the new criterion, it was used to construct the 3D fracture surfaces of 5083-O aluminum alloy, TRIP690, and Docol 600DL (a dual-phase steel). Comparisons of the results with experimental observations indicate that the proposed criterion provides good prediction capability over a large range of stress states for various materials, with good flexibility and considerable accuracy.
-
Keywords:
- ductile fracture /
- uncoupled /
- stress triaxiality /
- Lode parameter /
- void evolution
-
-
[1] Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast, 2014, 54:56
[2] Li Y N, Luo M, Gerlach J, et al. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol, 2010, 210(14):1858
[4] Merklein M, Allwood J M, Behrens B A, et al. Bulk forming of sheet metal. CIRP Ann Manuf Technol, 2012, 61(2):725
[5] McClintock F A, Kaplan S M, Berg C A. Ductile fracture by hole growth in shear bands. Int J Fract Mech, 1966, 2(4):614
[6] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids, 1969, 17(3):201
[7] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth:Part I. Yield criteria and flow rules for porous ductile media. J Eng Mater Technol, 1977, 99(1):2
[8] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall, 1984, 32(1):157
[9] Nahshon K, Hutchinson J W. Modification of the Gurson model for shear failure. Eur J Mech A Solids, 2008, 27(1):1
[10] Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech, 2008, 75(11):3343
[11] Li H, Fu M W, Lu J, et al. Ductile fracture:experiments and computations. Int J Plast, 2011, 27(2):147
[12] Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics. Nucl Eng Des, 1984, 79(3):309
[13] Lemaitre J. Local approach of fracture. Eng Fract Mech, 1986, 25(5):523
[14] Cao T S, Gaillac A, Montmitonnet P, et al. Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical-experimental analysis of fracture experiments conducted on a zirconium alloy. Int J Solids Struct, 2013, 50(24):3984
[15] Cao T S, Gachet J M, Montmitonnet P, et al. A lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Eng Fract Mech, 2014, 124-125:80
[16] Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures. John Wiley&Sons, Inc, 1950
[17] Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract, 2010, 161:1
[18] Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct, 2012, 49(25):3605
[19] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion:experiments and simulation. J Mater Process Technol, 2013, 213(8):1284
[20] Algarni M, Bai Y L, Choi Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture. Eng Fract Mech, 2015, 147:140
[21] Zhuang X C, Wang T T, Zhu X F, et al. Calibration and application of ductile fracture criterion under non-proportional loading condition. Eng Fract Mech, 2016, 165:39
[22] Kiran R, Khandelwal K. A triaxiality and Lode parameter dependent ductile fracture criterion. Eng Fract Mech, 2014, 128:121
[23] Tvergaard V. Behaviour of voids in a shear field. Int J Fract, 2009, 158(1):41
[24] Barsoum I, Faleskog J. Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. Int J Solids Struct, 2011, 48(6):925
[25] Brünig M, Gerke S, Hagenbrock V. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int J Plast, 2013, 50:49
[26] Danas K, Castañeda P P. Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int J Solids Struct, 2012, 49(11):1325
[27] Ghajar R, Mirone G, Keshavarz A. Ductile failure of X100 pipeline steel:experiments and fractography. Mater Des, 2013, 43:513
[28] Qian L Y, Fang G, Zeng P, et al. Experimental and numerical investigations into the ductile fracture during the forming of flatrolled 5083-O aluminum alloy sheet. J Mater Process Technol, 2015, 220:264
[29] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci, 2004, 46(1):81
[30] Achouri M, Germain G, Santo P D, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des, 2013, 50:207
[31] Lou Y S, Huh H. Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter. Acta Mech Solida Sin, 2013, 26(6):642
[32] Samei J, Green D E, Cheng J, et al. Influence of strain path on nucleation and growth of voids in dual phase steel sheets. Mater Des, 2016, 92:1028
[33] Gruben G, Morin D, Langseth M, et al. Strain localization and ductile fracture in advanced high-strength steel sheets. Eur J Mech A Solids, 2016, 61:315
-
期刊类型引用(4)
1. 杨婷,张青,杨西鹏,邢承亮,董伊康. 基于应力修正的高强钢韧性断裂失效模型. 河北冶金. 2022(05): 24-30 . 百度学术
2. 钱凌云,马腾云,安鹏,纪婉婷,孙朝阳. 金属薄板面内压剪变形的损伤断裂行为. 工程科学学报. 2021(02): 263-272 . 本站查看
3. 叶成,樊瑜瑾,蒋崇健,郑淮河,唐军,吴家喜. 叠层紫铜母排冲裁成形研究. 塑性工程学报. 2020(08): 84-91 . 百度学术
4. 贾哲,穆磊,臧勇. 金属塑性成形中的韧性断裂微观机理及预测模型的研究进展. 工程科学学报. 2018(12): 1454-1467 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 764
- HTML全文浏览量: 189
- PDF下载量: 48
- 被引次数: 10