氧烛中锰金属粒径对氯酸钠热解的催化作用

Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators

  • 摘要: 分别制备了两组粒径的Mn金属燃料(平均粒径分别为18.73和5.24 μm),利用激光粒度分析仪测试了其粒径分布,扫描电镜分析了表面形貌,能谱仪确定了所含元素.对NaClO3,NaClO3与Co3O4,NaClO3、Co3O4与Mn的混合物分别进行了热重与示差扫描量热联合分析实验(TGA-DSC),通过对比各混合物热解起始温度及其他特征温度,探究了Mn金属粒径对NaClO3热解的催化强度与热解稳定性的影响.研究结果表明:Co3O4虽对NaClO3热解具有催化性,热解开始温度(To)由512.3℃下降为333.0℃,但其可导致NaClO3热解的不稳定,热解阶梯由1个变为3个;Mn金属燃料对NaClO3中间产物具有明显的催化性,且随着粒径减小,催化强度逐渐增加,热解终止温度(Tf)由419.8℃下降为351.9℃,同时NaClO3热解阶梯减少,热解温度区间变窄(由180.6℃减小为19.4℃),热解更加稳定.

     

    Abstract: Two groups of Mn metal fuels with different particle-size distributions were prepared with median diameters of 18.73 and 5.24 μm. The particle-size distribution was measured by a laser particle-size analyzer, the surface morphology was analyzed via scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) determined the contained elements. For the NaClO3, the NaClO3 and Co3O4 as well as NaClO3, Co3O4, and Mn mixtures were subjected to TGA-DSC combined thermogravimetric analysis. The effects of the Mn metal fuel particle size on the catalytic effect and pyrolysis stability of NaClO3 were investigated by comparing the pyrolysis onset/final temperature and other characteristics. The results show that although Co3O4 has a significant catalytic effect on the pyrolysis of NaClO3, e.g., the onset pyrolysis temperature decreases from 512.3 to 333.0℃, it can lead to instability in NaClO3 pyrolysis, namely the pyrolysis steps from 1 to 3. The Mn metal fuel has a clear catalysis effect on the intermediate products of NaClO3 pyrolysis. With the decrease in particle size, the catalytic effect gradually increases and the pyrolysis final temperature Tf decreases from 419.8 to 351.9℃. Meanwhile, the pyrolysis step of NaClO3 decreases and the temperature range of pyrolysis decreases from 180.6 to 19.4℃, indicating that the pyrolysis process becomes more stable.

     

/

返回文章
返回