Surface heat transfer of jet array impingement quenching for ultra-heavy plate
-
摘要: 采用特厚钢板专用辊式射流淬火试验装置和多通道钢板温度记录仪,测试出射流速度3.39~26.8 m·s-1、雷诺数12808~117340、水流密度978.7~6751.5 L·(m2·min)-1条件下,84 mm厚钢板淬火冷却曲线;进而基于反传热修正方法计算高温钢板淬火过程壁面温度和热流密度,描绘出沸腾曲线,分析多束圆孔阵列射流对特厚钢板淬火表面换热的影响.结果表明:射流速度、水流密度等参数影响钢板表面射流滞止区和平行流区换热机制,进而影响最大热流密度分布.射流速度较低时,壁面平行流区观察到混合换热和"热流密度肩"现象;随射流速度增大,膜沸腾换热机制消失,最大热流密度移至较低壁面过热度处.相关研究将对特厚钢板淬火过程温度场计算和组织性能调控提供有益的帮助.Abstract: Using the ultra-heavy-plate jet-impingement quenching test device and the multi-channel temperature recorder, 84 mm large section plates quenching temperature drop curve was experimentally investigated under the condition of jet velocities ranging from 3.39 to 26.8 m·s-1, Reynolds number from 12808 to 117340 and jet densities ranging from 978.7 to 6751.5 L·(m2·min)-1. Then, wall heat flux, heat transfer coefficient and boiling curve were calculated with inverse heat transfer modified method. The results indicate that both jet velocity and jet density influence the plate surface heat transfer mechanism and the distribution of the maximum heat flux. When jet velocity is low, a mixed heat transfer and "heat flux shoulder" phenomenon can be observed in wall parallel flow zone. With increased jet velocity, the film boiling heat transfer mechanism disappears and the maximum heat flux changes to the low-wall superheat position. These research results benefit the calculation of the temperature field and the control of structure property during ultra-heavy plate quenching.
-
Keywords:
- ultra-heavy plate /
- multibeam array jet /
- quenching /
- heat flux /
- boiling heat transfer
-
-
[1] Wang H M, Yu W, Cai Q W. Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling. J Mater Process Technol, 2012, 212(9):1825
[2] Malinowski Z, Telejko T, Hadała B, et al. Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water. Int J Heat Mass Trans, 2014, 75:347
[3] Li X T, Wang M T, Du F S. A coupled thermal mechanical and microstructural FE model for hot strip continuous rolling process and verification. Mater Sci Eng A, 2005, 408(1-2):33
[4] Karwa N, Gambaryan-Roisman T, Stephan P, et al. Experimental investigation of circular free-surface jet impingement quenching:transient hydrodynamics and heat transfer. Exp Therm Fluid Sci, 2011, 35(7):1435
[5] Karwa N, Stephan P. Experimental investigation of free-surface jet impingement quenching process. Int J Heat Mass Trans, 2013, 64:1118
[6] Wang L, Sundén B, Borg A, et al. Heat transfer characteristics of an impinging jet in crossflow. J Heat Trans, 2011, 133(12):122202-1
[7] Lindeman B A, Anderson J M, Shedd T A. Predictive model for heat transfer performance of oblique and normally impinging jet arrays. Int J Heat Mass Trans, 2013, 62:612
[8] Gradeck M, Kouachi A, Lebouché M, et al. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement. Int J Heat Mass Trans, 2009, 52(5-6):1094
[9] Robidou H, Auracher H, Gardin P, et al. Controlled cooling of a hot plate with a water jet. Exp Therm Fluid Sci, 2002, 26(2-4):123
[10] Liu Z H, Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int J Heat Mass Trans, 2001, 44(13):2475
[12] Fu T L, Wang Z D, Li Y, et al. The influential factor studies on the cooling rate of roller quenching for ultra heavy plate. Appl Therm Eng, 2014, 70(1):800
[13] Leocadio H, Passos J C, da Silva A F C. Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet//7th ECI International Conference on Boiling Heat Transfer. Santa Catarina, 2009:429
[14] Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching. Int J Heat Mass Trans, 2009, 52(1-2):460
[15] Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement. Int J Heat Mass Trans, 2006, 49(17-18):2877
[17] Li D F. Boiling Water Heat Transfer during Quenching of Steel Plates and Tubes[Dissertation]. Vancouver:University of British Columbia, 2003
[18] Hernandez-Avila V H. Modeling of the Thermal Evolution of Steel Strips Cooled in the Hot Rolling Runout Table[Dissertation]. Vancouver:University of British Columbia, 2000
[19] Hall D E, Incropera F P, Viskanta R. Jet impingement boiling from a circular free-surface jet during quenching:Part 1-single phase jet. J Heat Trans, 2001, 123:901
-
期刊类型引用(1)
1. 杨一,庞玉华,孙琦,董少若,刘东. 考虑实际边界条件的辊式淬火过程温度场数值模拟. 材料导报. 2022(15): 179-185 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 899
- HTML全文浏览量: 241
- PDF下载量: 18
- 被引次数: 4