Abstract:
The performance of a walking mechanism determines whether a coal mine rescue robot can successfully enter a disaster scene for conducting a rescue. To explore which type of the crawler-walking mechanism is more suitable for the coal mine rescue robot, five types of common crawler-type walking mechanisms were evaluated based on the following four aspects:walking ability, explosion prevention, handling, and reliability. In the process of evaluation, the space pass capacity, the maximum obstacle height, the maximum trench width, and the chassis height of the five types of walking mechanisms were theoretically analyzed. Then, a mathematical model for determining the influence of the number of motor drives on the difficulty of explosion-proof, handling, and reliability was proposed. According to the design experience of the coal mine rescue robot and the theoretical model, the five types of walking mechanisms were quantitatively evaluated. Finally, the walking mechanism with the angle of entry and departure is found to be most suitable for the coal mine rescue robot. Based on the evaluation results, the CUMT-V coal mine rescue robot was designed.