形变过程中TRIP效应的相变热动态研究

Dynamic study on phase-change heat of TRIP effect during deformation

  • 摘要: 采用拉伸与测温试验同时进行的方法,将应力应变曲线与热能曲线相结合,动态研究热轧TRIP钢拉伸过程中的相变热.研究表明:热轧TRIP钢在拉伸过程中材料增加的热能由部分转变的塑性功和马氏体相变热组成,因此,拉伸过程中实际测得的试样热能高于由塑性功转变的热能.利用平均综合热能损失系数对低速拉伸的TRIP钢的热能进行补充,通过计算与推导,证实了试样在刚进入塑性变形时,一定数量的较不稳定残余奥氏体首先集中发生马氏体相变,随着应变的进一步加大,剩余的较稳定的残余奥氏体根据其稳定情况发生马氏体相变的数量逐渐减少,在试样均匀延伸结束前绝大部分残余奥氏体已转变为马氏体.结合相变热变化可动态描述热轧TRIP钢形变过程中马氏体相变的情况.

     

    Abstract: During tensile and temperature tests, the latent heat of hot-rolled TRIP steel was dynamically investigated by observing the stress-strain and thermal curves. The results indicated that during the tensile test, the hot-rolled TRIP steel increased the thermal energy, which originated from the partial transformation of plastic work and martensitic transformation. Therefore, the actual heat of the measured sample was higher than that converted by plastic work. During the low speed tensile test, the thermal energy of the TRIP steel was supplemented by the average integrated heat loss coefficient. Through calculation and deduction, it was confirmed that a certain amount of the unstable residual austenite first became martensite, when the plastic deformation had just begun. As the strain increased further, the amount of the remaining, stable, retained austenite that would become martensite, decreased gradually according to its stability. Most of the retained austenite had almost become martensite before the end of the uniform elongation. During the deformation process of the hot rolled TRIP steel, the martensitic transformation could be dynamically described by the change of latent heat.

     

/

返回文章
返回