Abstract:
For shale gas exploitation, it is scientifically essential to clarify the mechanism of gas flow in nanopore media. Shale is a kind of tight rock, whose pore size mainly ranges from several nanometers to dozens of nanometers. Since it is of the same magnitude as the gas molecular mean free path, the collision between the gas molecular and pore surface is not negligible for gas flow and results in the failure of Darcy's law when describing this low permeability reservoir gas flow mechanism. In order to clarify the micropore gas flow mechanism and the real extraction process of shale gas, a multiphysics governing equation was established, which combines slip flow, Knudsen diffusion, Langmuir isotherm adsorption, and pore compressibility. The effect of different flow regimes on slip flow was analyzed, and the threshold pore size was obtained with consideration of the slippage effect. Then, the contribution of desorption to gas production rate and gas output was clarified based on the organic content of disparate shale samples. The results indicate that the gas production rate is sensitive to pore compressibility, and it is more reasonable to simulate the gas flow process when considering pore compressibility.