钢渣改性生物质废弃材料制备生态活性炭及其降解甲醛性能

Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance

  • 摘要: 以钢渣与生物质废弃材料为研究对象,利用钢渣中含有的金属氧化物对生物质废弃材料进行改性处理获得生态活性炭,研究钢渣种类、钢渣粉磨时间和钢渣超微粉用量对生态活性炭降解甲醛性能的影响。利用X-射线荧光光谱仪(XRF)、X-射线衍射仪(XRD)、激光粒度仪(LPSA)、傅立叶变换红外光谱仪(FTIR)、比表面积及孔径测定仪(BET)和扫描电子显微镜(SEM)测试钢渣超微粉的化学成分、钢渣超微粉的矿物组成、钢渣超微粉的粒径分布、钢渣超微粉的结构组成、生态活性炭的孔结构和生态活性炭的微观形貌。结果表明:钢渣为电炉渣,钢渣粉磨时间为90 min,钢渣超微粉用量为20 g制备的生态活性炭具有良好的降解甲醛性能与合理的经济性,即10 h后甲醛降解率为57.5%。电炉渣中Fe元素与Mn元素含量高,其中Fe元素促使大量甲醛在活性炭的多孔结构中形成富集,Mn元素对富集的甲醛进行催化降解,实现吸附降解与催化降解的协同作用。适当延长钢渣粉磨时间可以减小钢渣超微粉的粒径大小与改善钢渣超微粉的粒度分布均匀程度,有利于提高钢渣超微粉与活性炭、甲醛的降解作用面积。适量的钢渣超微粉可以提高生态活性炭的粉化率,抵消由于孔容积与比表面积降低导致的活性炭吸附降解作用下降的问题。

     

    Abstract: With steel slag and biomass waste material as the research object, biomass waste material was modified by metal oxide in steel slag to obtain ecological activated carbon. The influences of steel slag type, grinding time of steel slag, and the amount of steel slag ultrafine powder on the formaldehyde degradation performance of ecological activated carbon were studied. The chemical composition of steel slag, mineral composition of steel slag, particle size distribution of steel slag, structural composition of steel slag ultrafine powder, the pore structure of ecological activated carbon, and the microstructure of ecological activated carbon were characterized by X-ray fluorescence X-ray diffraction, laser particle size distribution analysis, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and scanning electron microscopy, respectively. The results show that the prepared ecological activated carbon show good formaldehyde degradation performance and reasonable economy; the degradation rate of formaldehyde after 10 h is 57.5%; when steel slag is electric furnace slag, the grinding time of the steel slag is 90 min, and the amount of steel slag ultrafine powder is 20 g. High contents of Fe and Mn were present in the electric furnace slag. Iron promoted the concentration of a large amount of formaldehyde in the porous structure of activated carbon, and Mn catalyzes the degradation of enriched formaldehyde, realizing the synergistic effect of adsorption degradation and catalytic degradation. Appropriately extending the grinding time of the steel slag can significantly reduce the particle size of the steel slag ultrafine powder and improve the particle size distribution uniformity of the steel slag ultrafine powder, which is beneficial to increasing the degradation area of steel slag ultrafine powder, activated carbon, and formaldehyde. An appropriate amount of steel slag ultrafine powder can improve the pulverization rate of ecological activated carbon and offset the decline of activated carbon adsorption performance due to the decrease of porosity and specific surface area of the activated carbon.

     

/

返回文章
返回