A microsegregation model in the two-phase region of an ND steel continuous casting billet
-
摘要:
通过构建ND钢连铸坯凝固两相区内溶质的微观偏析模型, 不仅研究了C、S和P元素对固液两相区内钢的高温力学参数以及溶质再分配的影响, 还对P元素偏析比随冷却速率(CR) 的变化规律进行了探究.通过分析模型结果表明: 初始C的质量分数在0.075%~0.125%之间时, 随着初始C含量的增加, P、S元素的偏析加剧, 凝固末端温度下降幅度变大, 导致脆性温度区间增大; 增加P和S元素的初始含量, P、S元素的偏析比降低, 但会加剧其在枝晶间残余液相中的富集, 直接导致零塑性温度(ZDT) 下降; ND钢中的Cu含量低于显著提高裂纹敏感性的临界含量, 且凝固过程中Cu元素的偏析比较低, 因此在ND钢凝固过程中Cu元素不能主导裂纹的诱发; 在一定的冷却速率波动范围内, P元素的偏析比随着冷却速率(CR)的提高略有下降.
Abstract:ND steel is a low alloy steel that resists the dew point corrosion of sulfuric acid.To improve the special performance of ND steel, the chemical composition of ND steel not only contains conventional elements but also adds corrosion-resistant elements, such as Cu, Cr, and Ni.During the solidification process, the molten steel will undergo a phase change reaction.Owing to the differences in the distribution coefficients and diffusion coefficients of solute elements in different phases, solute elements will be redistributed in the solid-liquid two-phase region during solidification, which will lead to microsegregation of solute elements.The microsegregation of solute element makes the zero strength temperature and zero plasticity temperature (ZDT) of steel decrease, which makes the temperature range of brittleness expand and deteriorates the mechanical property of high temperature of the continuous casting billet, and finally increases the probability of inducing surface cracks.This paper takes the microsegregation of solute elements as the research background.Herein, a microsegregation model for the solute in the solidified two-phase region of an ND steel continuous casting billet was established.In the model, the effects of elements C, S, and P on high-temperature mechanical parameters and solute redistribution of steel in its solid-liquid two-phase region were studied, and the variation law of the segregation ratio of elemental P with cooling rate (CR) was also explored.According to the analysis of the model results, when the initial C content was between 0.075%and 0.125%, with an increase in the initial C content, segregation of P and S elements intensified, and the temperature drop at the solidification end became larger, leading to the increase in the brittle temperature range.According to the analysis of the model results, increasing the initial content of P and S will decrease the segregation ratio of P and S elements but will increase the enrichment content of P and S elements in the residual liquid phase between dendrites, directly leading to the decline of ZDT.Analysis of the model results shows that the Cu content in ND steel is lower than the critical content that significantly increases the crack sensitivity, and the segregation ratio of Cu element is at a low level during solidification.Therefore, elemental Cu cannot dominate the induced crack in ND steel during solidification.Finally, within a certain range of cooling rate fluctuation, the segregation ratio of P will decrease slightly with increasing CR.
-
-
表 1 1873K时各元素活度相互作用系数
Table 1 Activity interaction coefficient of each element at 1873K
eij C Si Mn P S Cu Ni Cr Mn -0.07 - - -0.0035 -0.048 - - - S 0.11 0.063 -0.026 0.029 -0.028 -0.0084 0 -0.011 表 2 溶质元素在各相中的凝固参数
Table 2 Solidification parameters of the solute elements in each phase
元素 kiδ/L kiγ/L Diδ/(cm2·s-1) Diγ/(cm2·s-1) mi C 0.19 0.34 5.08×10-5 8.26×10-6 78.0 Si 0.77 0.52 3.70×10-7 1.17×10-8 7.6 Mn 0.76 0.78 1.86×10-7 2.47×10-9 4.9 P 0.23 0.13 4.81×10-7 4.10×10-8 34.4 S 0.05 0.035 2.16×10-6 6.27×10-7 38.0 Cu 0.53 0.88 2.21×10-7 2.63×10-9 5.32 Ni 0.83 0.95 1.36×10-7 1.63×10-10 4.69 Cr 0.95 0.86 2.239×10-7 4.236×10-10 1.04 表 3 实验钢种化学成分(质量分数)
Table 3 Chemical composition of experimental steel
% C Si Mn P S 0.13 0.35 1.52 0.016 0.002 表 4 ND钢化学成分(质量分数)
Table 4 ND steel element composition
% C Si Mn P S Cu Ni Cr 0.07~0.125 0.20~0.40 0.40~0.60 <0.025 <0.010 0.25~0.45 0.10~0.20 0.75~1.00 -
[1] 蔡兆镇, 朱苗勇. 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响. 金属学报, 2009, 45(8) : 949 doi: 10.3321/j.issn:0412-1961.2009.08.009 Cai Z Z, Zhu M Y. Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand. Acta Metall Sin, 2009, 45 (8) : 949 doi: 10.3321/j.issn:0412-1961.2009.08.009
[2] 宋景欣, 蔡兆镇, 朱苗勇. 连铸板坯结晶器内凝固坯壳裂纹敏感性研究. 铸造技术, 2016, 37(11) : 2376 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611021.htm Song J X, Cai Z Z, Zhu M Y. Analysis of solidified shell cracking susceptibility in in slab continuous casting mold. Foundry Technol, 2016, 37(11) : 2376 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611021.htm
[3] Bower T F, Brody H D, Flemings M C, et al. Measurements of solute redistribution in dendritic solidification. Trans Metall Soc AIME, 1966, 236(5) : 624 http://ci.nii.ac.jp/naid/10007126115
[4] Voller V R, Beckermann C. A unified model of microsegregation and coarsening. Metall Mater Trans A, 1999, 30(8) : 2183 doi: 10.1007/s11661-999-0030-z
[5] Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Metall Trans B, 1982, 13(2) : 259 doi: 10.1007/BF02664583
[6] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7) : 1755 doi: 10.1007/s11661-001-0152-4
[7] 曾亚南. 微合金钢连铸坯第二相粒子析出机理与表面裂纹控制研究[学位论文]. 北京: 北京科技大学, 2015 Zeng Y N.Precipitation Mechanism of Second Phase Particles and Control of Surface Cracks in Continuous Casting Slab of Microalloyed Steel [Dissertation].Beijing: University of Science and Technology Beijing, 2015
[8] 刘学. 钢中MnS夹杂物析出行为研究[学位论文]. 沈阳: 东北大学, 2012 Liu X.Precipitation Behavior of MnS Inclusion in the Steel [Dissertation].Shenyang: Northeastern University, 2012
[9] Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12) : 1819 doi: 10.2355/isijinternational.49.1819
[10] 韩志强, 蔡开科. 连铸坯中微观偏析的模型研究. 金属学报, 2000, 36(8) : 869 doi: 10.3321/j.issn:0412-1961.2000.08.020 Han Z Q, Cai K K. Study on a mathematical model of microsegregation in continuously cast slab. Acta Metall Sin, 2000, 36 (8) : 869 doi: 10.3321/j.issn:0412-1961.2000.08.020
[11] Cornelissen M C M. Mathematical model for solidification of multicomponent alloys. Ironmak Steelmak, 1986, 13(4) : 204 http://www.researchgate.net/publication/291769021_MATHEMATICAL_MODEL_FOR_SOLIDIFICATION_OF_MULTICOMPONENT_ALLOYS
[12] 王雅贞. 新编连续铸钢工艺及设备. 北京: 冶金工业出版社, 1999 Wang Y Z. New Continuous Cast Steel Technology and Equipment. Beijing: Metallurgical Industry Press, 1999
[13] Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical analysis of segregations in continuously-cast slabs. Trans Iron Steel Inst Jpn, 1984, 24(11) : 873 doi: 10.2355/isijinternational1966.24.873
[14] 冼爱平, 张盾, 王仪康. 钢中残余元素及其对钢性能的影响. 钢铁, 1999, 34(10) : 64 doi: 10.3321/j.issn:0449-749X.1999.10.018 Xian A P, Zhang D, Wang Y K. Impurities in steel and their influence on steel properties. Iron Steel, 1999, 34(10) : 64 doi: 10.3321/j.issn:0449-749X.1999.10.018