Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure
-
摘要:
油气工业中溴盐完井液的使用极易导致油套管腐蚀失效的发生, 尤其是局部腐蚀风险.针对这一问题, 采用高温高压腐蚀模拟试验、扫描电镜观察与分析、电化学测试等试验研究方法, 研究了高温高压环境下不同浓度溴盐溶液对普通13Cr和超级13Cr两种典型油套管材腐蚀行为的影响.结果表明: 从平均腐蚀速率来看, 两种13Cr管材在三种浓度溴盐溶液中均表现出较好的耐蚀性能, 属于轻度或中度腐蚀, 但从局部腐蚀速率来看, 两种材料均达到严重或极严重腐蚀; 随着溴盐浓度的提高, 普通13Cr的自腐蚀电位和点蚀电位均明显负移, 对应材料的平均腐蚀速率和局部腐蚀速率均明显上升, 而超级13Cr仅点蚀电位明显负移, 自腐蚀电位则相对稳定, 对应其平均腐蚀速率变化幅度较小, 局部腐蚀速率则明显上升, 这说明相比普通13Cr, 超级13Cr对溴盐溶液具有更强的整体耐受能力, 但局部腐蚀敏感性仍然较高; 激光共聚焦(LSCM)三维表征结果表明, 在高质量浓度溴盐溶液(1.40 g·cm-3)中, 不论是普通13Cr还是超级13Cr都有明显的点蚀倾向, 这主要与溶液中高浓度的侵蚀性阴离子Br-有关, 相比于普通13Cr, 超级13Cr的点蚀敏感性相对较低, 但其点蚀风险仍不可忽视.
Abstract:Recently, the use of bromine completion fluids in the oil and gas industry has caused numerous severe corrosion problems of the oil well casing and tubing, particularly the localized corrosion failure. Bromine completion fluids, such as KBr solution, are highly corrosive to steels. Even if the stainless steel is subjected to a high concentration of bromate under high temperature and pressure, it can still experience severe corrosion failure risks. In this study, the influence of KBr concentrations on corrosion behaviors of plain and super 13Cr steels under high temperature and pressure was investigated by corrosion simulation, scanning electron microscopy (SEM) observation, and electrochemical measurements. The results show that both plain and super 13Cr steels exhibit good corrosion resistance in KBr solutions with various concentrations regarding average corrosion rate, which is either mild or moderate. However, the local corrosion rates of plain and super 13Cr steels are serious or extremely serious. With the increase of bromide concentration, the free corrosion and pitting potentials of plain 13Cr steel significantly decrease. Both the average and local corrosion rates increase significantly. For super 13Cr steel, the pitting potential decreases, whereas the free potential remains relatively stable. The average corrosion rate of super 13Cr steel shows a lower scope of change than the local corrosion rate, which increases significantly and indicates that super 13Cr steel is much more corrosion resistant than plain 13Cr steel, but its local corrosion sensitivity is still high. Laser scanning confocal microscopy (LSCM) results show that both plain and super 13Cr steels exhibit serious pitting corrosion in a KBr solution with a concentration of 1.40 g·cm-3, and this is related to the aggressiveness of Br-. Compared with plain 13Cr steel, super 13Cr steel shows a lower pitting sensitivity; however, its pitting corrosion risk cannot be ignored.
-
-
图 4 普通13Cr在不同质量浓度溴盐溶液下腐蚀7 d后酸洗前(左)和酸洗后(右)的宏观腐蚀形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
Figure 4. Macro-photographs of plain 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
图 5 超级13Cr在不同质量浓度溴盐溶液下腐蚀7 d后酸洗前(左)和酸洗后(右)的宏观腐蚀形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
Figure 5. Macro-photographs of super 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
表 1 实验所用的两种13Cr不锈钢材质成分(质量分数)
Table 1 Main chemical composition of the two kinds of 13Cr steels
材料 C Cr Ni Mo Si Mn P S V Fe 普通13Cr 0.19 12.1 0.30 0.23 0.015 0.004 0.042 余量 超级13Cr 0.03 13.2 5.12 2.11 0.35 0.39 0.016 余量 表 2 三种不同浓度的溴盐溶液成分
Table 2 Chemical compositions of three test solutions with different concentrations
溶液密度/(g·cm-3) 配置1 L溴盐溶液 KBr质量/g 去离子水体积/L 1.01 10 1 1.10 100 1 1.40 400 1 -
[1] 张国超, 林冠发, 孙育禄, 等. 13Cr不锈钢腐蚀性能的研究现状与进展. 全面腐蚀控制, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004 Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel. Total Corros Control, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004
[2] 褚武扬, 王燕斌, 关永生, 等. 抗H2S石油套管钢的设计. 金属学报, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012 Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubular steel. Acta Metall Sinica, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012
[3] 吕祥鸿, 赵国仙, 王宇, 等. 超级13Cr马氏体不锈钢抗SSC性能研究. 材料工程, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004 Lü X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004
[4] 陈尧, 白真权. 13Cr和N80钢高温高压抗腐蚀性能比较. 石油与天然气化工, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016 Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016
[5] 蔡亮. 环保型完井液的研究与应用[学位论文]. 大庆: 大庆石油学院, 2009 Cai L. The Research and Application of Environmentally Friendly Completion Fluid[Dissertation]. Daqing: Daqing Petroleum Institute, 2009
[6] Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65(11): 1096 doi: 10.1002/maco.201307489
[7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 doi: 10.1016/j.apsusc.2014.07.067
[8] Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 doi: 10.1007/s11665-010-9769-z
[9] 吕祥鸿, 赵国仙, 樊治海, 等. 高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响. 材料保护, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013 Lü X H, Zhao G X, Fan Z H, et al. Effects of CI- concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013
[10] 侯赞, 周庆军, 王起江, 等. 13Cr系列不锈钢在模拟井下介质中的CO2腐蚀研究. 中国腐蚀与防护学报, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon dioxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm
[11] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 doi: 10.1016/j.corsci.2018.10.011
[12] Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution. Corros Sci, 2018, 131: 164 doi: 10.1016/j.corsci.2017.10.015
[13] Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propargyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 doi: 10.1016/j.corsci.2012.12.004
[14] ASTM International, United States. ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken: ASTM International, 2011
[15] NACE International, United States. NACE PR0775-05 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. Houston: ASTM International, 2005
[16] Si J J, Wu Y D, Wang T, et al. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 doi: 10.1016/j.apsusc.2018.03.186
[17] Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels. J Alloys Compd, 2019, 775: 1136 doi: 10.1016/j.jallcom.2018.10.253
[18] Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 doi: 10.1016/j.apsusc.2014.07.086