Fe−Mn−Al−C系中锰钢的研究现状与发展前景

宋仁伯, 霍巍丰, 周乃鹏, 李佳佳, 张哲睿, 王永金

宋仁伯, 霍巍丰, 周乃鹏, 李佳佳, 张哲睿, 王永金. Fe−Mn−Al−C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. DOI: 10.13374/j.issn2095-9389.2019.08.27.002
引用本文: 宋仁伯, 霍巍丰, 周乃鹏, 李佳佳, 张哲睿, 王永金. Fe−Mn−Al−C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. DOI: 10.13374/j.issn2095-9389.2019.08.27.002
SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe−Mn−Al−C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. DOI: 10.13374/j.issn2095-9389.2019.08.27.002
Citation: SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe−Mn−Al−C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. DOI: 10.13374/j.issn2095-9389.2019.08.27.002

Fe−Mn−Al−C系中锰钢的研究现状与发展前景

基金项目: 中国博士后科学基金资助项目(2019M650482);教育部中央高校基金资助项目(FRF-TP-18-039A1,FRF-IDRY-19-013)
详细信息
    通信作者:

    宋仁伯: E-mail: songrb@mater.ustb.edu.cn

  • 分类号: TG142.71

Research progress and prospect of Fe−Mn−Al−C medium Mn steels

More Information
  • 摘要: 随着汽车保有量的提高,能源消耗和环境问题对汽车用钢提出了轻量化的要求。目前正在发展的第三代汽车用钢的研究思路是将加入轻量元素以“轻”和增强增塑以“薄”相结合。Fe−Mn−Al−C系中锰钢作为第三代汽车用钢的主要组成部分,是当今的研究热点之一。本文总结了近些年国内外Fe−Mn−Al−C系中锰钢的研究文献,从生产成本、力学性能等方面介绍了Fe−Mn−Al−C系中锰钢的优势。从成分设计、工艺设计、组织特征、变形及断裂机制等多个方面出发,对文献进行分析,总结出了合金成分、工艺路线和组织特征对性能的影响规律。阐述了奥氏体层错能及其稳定性对中锰钢变形机制,尤其是相变诱导塑性(TRIP效应)的影响规律。最后对目前Fe−Mn−Al−C系中锰钢研究过程中存在的争议问题进行了总结,展望了未来的发展趋势,以期为中锰钢的后续研究和实际生产提供参考。
    Abstract: As vehicle ownership increases, the trend lightweight design puts energy consumption and environmental concerns on automotive steel. The research concept of the third generation of automotive steel currently under development is to combine the addition of lightweight elements with “light” and improve plasticization with “thin”. Some of the research hotspots are Fe−Mn−Al−C medium Mn steels as the main component of the third generation of automotive steel. This paper summarized the research literature of Fe−Mn−Al−C steels in recent years in different countries, and discussed the advantages of Fe−Mn−Al−C medium Mn steels in terms of production cost and mechanical properties; the mechanical properties of that is not worse or even better than the second generation of advanced high-strength automotive steel such as TWIP steel can be obtained under the premise of cost savings. The literature was reviewed from the aspects of composition design, process design, microstructure characteristics, deformation and fracture mechanism, and the effect on the efficiency of chemical composition, process route, and microstructure on performance was summarized. It proposed a reasonable range of chemical elements especially Mn and Al, and compared the focus of the two different process routes (Intercritical annealing and quenching + Tempering). The deformation mechanism of medium Mn steel, especially transformation-induced plasticity (TRIP) effect, and the stacking fault energy and austenite stability were identified, in particular, the factors affecting the austenite stability such as grains size, grain morphology and chemical elements were described, and the three-stage work hardening behavior that often occurs in Fe−Mn−Al−C steels was explained. Furthermore, the literature proposed suggestions on regulating the organization of Fe−Mn−Al−C steels by studying the fracture mechanism of materials. Typically the initiation of cleavage cracks is linked to the process of coarse δ-ferrite and κ* phase. Finally, this paper summarized the controversial issues in Fe−Mn−Al−C medium Mn steels research and prospected the future development trend, to provide a reference for the follow-up research and actual production of medium Mn steels.
  • 图  1   Fe–11Mn–xAl–0.2C中锰钢力学性能随Al含量的变化

    Figure  1.   Mechanical properties of Fe–11Mn–xAl–0.2C steel with changes of Al content

    图  2   Fe–Mn–Al–C系中锰钢强塑积与Mn/Al的关系

    Figure  2.   PSE vs Mn/Al of Fe–Mn–Al–C medium Mn steels

    图  3   Fe–Mn–Al–C系中锰钢两种典型热处理工艺。(a)临界退火工艺图[21,36,40];(b)淬火+回火工艺图[20,47]

    Figure  3.   Typical heating treatments processes of Fe–Mn–Al–C medium Mn steels: (a) IA[21,36,40]; (b) Q&T[20,47](A—austenite, F—ferrite, M—martensite, θ—cementite)

    图  4   Fe–Mn–Al–C系中锰钢力学性能与工艺的关系。(a)中锰钢在不同工艺下的强塑积和延伸率分布;(b)Fe–8Mn–3Al–0.5C两种工艺样品的工程应力应变曲线[47]

    UTS—ultimate tensile strength;YS—yield strength;TE—total elongation;YR—yield ratio;PSE—product of strength and elongation

    Figure  4.   Relations between mechanical properties and processes of Fe–Mn–Al–C medium Mn steels: (a) PSE and TE distribution of Fe–Mn–Al–C medium Mn steels in different processes; (b) engineering stress–strain curves of two different processes in Fe–8Mn–3Al–0.5C[47]

    图  5   Fe–Mn–Al–C系中锰钢屈强比与屈服强度的关系

    Figure  5.   YR vs YS of Fe–Mn–Al–C medium Mn steels

    图  6   几种典型的Fe–Mn–Al–C系中锰钢组织。(a)Fe–6Mn–2Al–0.4C在750 ℃临界退火20 min的SEM组织[5];(b)Fe–8Mn–6Al–0.2C在1000 ℃固溶处理2 h的SEM组织[41];(c)Fe–10Mn–10Al–0.7C 在850 ℃退火1 h的SEM组织[9]

    Figure  6.   Typical microstructures of Fe–Mn–Al–C medium Mn steels: (a) SEM microstructure of Fe–6Mn–2Al–0.4C annealed at 750 ℃ for 20 min[5]; (b) SEM microstructure of Fe–8Mn–6Al–0.2C after solution treatment at 1000 ℃ for 2 h[41]; (c) SEM microstructure of Fe–10Mn–10Al–0.7C annealed at 850 ℃ for 1 h[9]

    图  7   1000 ℃固溶处理1 h后SEM组织中带状δ-铁素体晶粒的破碎和离散模型[8]

    RD—rolling direction;ND—normal direction

    Figure  7.   Stuck and separation model for banded-structure δ-ferrite grains in SEM micrograph after solution treatment at 1000 ℃ for 1 h[8]

    图  8   Al和Mn含量对κ相溶线的影响:(a)Fe–30Mn–xAl–1C;(b)Fe–xMn–7Al–1C[72,76]

    Figure  8.   Effects of Al and Mn contents on the solvus of κ phase in (a) Fe–30Mn–xAl–1C and (b) Fe–xMn–7Al–1C[72,76]

    图  9   Mn的质量分数为10%时通过实验(数据点[77-78])以及基于FactSage 6.4(实线[72])和CALPHAD(虚线[79])计算得到的Fe–Mn–Al–C合金900 ℃热力学相图

    Figure  9.   Isothermal phase sections of Fe–Mn–Al–C alloys at 900 ℃ established by experiments (indicidual points[77-78]), calculated from FactSage 6.4 (solid lines[72]) and from CALPHAD approach (dotted lines[79]) when Mn content is 10%

    图  10   用3D呈现的Fe–Mn–Al–C钢在室温下基于成分的SFE图

    Figure  10.   Composition-dependent SFE map of Fe–Mn–Al–C steels at room temperatures presented in 3D

    图  11   Fe–6Mn–2Al–0.4C在不同退火温度下的加工硬化速率曲线[5]

    Figure  11.   Working hardening rate curves at various annealing temperatures in Fe–6Mn–2Al–0.4C [5]

    图  12   Fe–Mn–Al–C系中锰钢的断裂机制。(a)Fe–8Mn–6Al–0.2C拉伸变形后的SEM断口形貌[41];(b)Fe–8Mn–8Al–0.8C拉伸变形中复合断裂示意图[39]

    RD—rolling direction;TD—transverse direction;FG—fine-grained region

    Figure  12.   Fracture mechanism of Fe–Mn–Al–C medium Mn steels: (a) SEM fractograph after tensile deformation in Fe–8Mn–6Al–0.2C[41]; (b) schematic illustration showing the formation of mixed fracture during tensile deformation for Fe–8Mn–8Al–0.8C[39]

    图  13   临界退火后的Fe–6Mn–3Al–0.3C–1.5Si钢在拉伸变形时的破坏形成模型[94]。(a)在UFG区的孔洞萌生模型;(b)类解理裂纹的形成模型

    RD—rolling direction;ND—normal direction

    Figure  13.   Model for damage formation during the tensile deformation of intercritically annealed Fe–6Mn–3Al–0.3C–1.5Si steel[94]: (a) model for void initiation in the UFG constituent; (b) model for cleavage-like crack creation

    表  1   不同组织类型Fe–Mn–Al–C中锰钢的化学成分和力学性能[53]

    Table  1   Chemical compositions and tensile properties of various Fe–Mn–Al–C medium Mn steels by their microstructure[53]

    MicrostructureMain chemical compositionMechanical propertiesReferences
    Yield strength/
    MPa
    Tensile strength/
    MPa
    Total elongation/
    %
    α-ferrite (+ κ-carbide)Fe–3.5Mn–5.8Al–0.3C53272223.2[5460]
    α-ferrite + austenite (+κ-carbide)Fe–9Mn–5Al–0.3C50273477[6168]
    α-ferrite + δ-ferrite + austenite +
    martensite(+κ-carbide)
    Fe–8.1Mn–5.3Al–0.23C56194954[2021,39,
    41,6971]
    下载: 导出CSV
  • [1] 唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状. 钢铁, 2005, 40(6):1 doi: 10.3321/j.issn:0449-749X.2005.06.001

    Tang D, Mi Z L, Chen Y L. Technology and research and development of advanced automobile steel abroad. Iron Steel, 2005, 40(6): 1 doi: 10.3321/j.issn:0449-749X.2005.06.001

    [2] 康永林. 汽车轻量化先进高强钢与节能减排. 钢铁, 2008, 43(6):1 doi: 10.3321/j.issn:0449-749X.2008.06.001

    Kang Y L. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction. Iron Steel, 2008, 43(6): 1 doi: 10.3321/j.issn:0449-749X.2008.06.001

    [3] 罗振轩, 荣建, 杨可, 等. 高强度汽车用钢发展与第3代汽车高强度钢的研究. 汽车工艺与材料, 2015(4):1 doi: 10.3969/j.issn.1003-8817.2015.04.001

    Luo Z X, Rong J, Yang K, et al. Development of high strength automotive steel and research on 3rd generation automotive high strength steel. Automobile Technol Mater, 2015(4): 1 doi: 10.3969/j.issn.1003-8817.2015.04.001

    [4]

    Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 doi: 10.1179/1743284714Y.0000000722

    [5]

    Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Mater Sci Eng A, 2019, 745: 212 doi: 10.1016/j.msea.2018.12.110

    [6]

    Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Mater Sci Eng A, 2018, 737: 69 doi: 10.1016/j.msea.2018.09.024

    [7]

    Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe–Mn–Al–C steel. Mater Des, 2015, 76: 32 doi: 10.1016/j.matdes.2015.03.043

    [8]

    Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe–Mn–Al–C steel. Mater Sci Eng A, 2015, 640: 225 doi: 10.1016/j.msea.2015.05.108

    [9]

    Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel. Mater Des, 2016, 91: 348 doi: 10.1016/j.matdes.2015.11.115

    [10]

    Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 doi: 10.1016/j.msea.2016.11.048

    [11] 徐娟萍, 付豪, 王正, 等. 中锰钢的研究进展与前景. 工程科学学报, 2019, 41(5):557

    Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel. Chin J Eng, 2019, 41(5): 557

    [12]

    Da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 doi: 10.1016/j.actamat.2016.11.013

    [13]

    Han J, Da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 doi: 10.1016/j.actamat.2016.09.048

    [14]

    Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 doi: 10.1126/science.aab2633

    [15]

    Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev Met Paris, 2000, 97(10): 1245 doi: 10.1051/metal:2000110

    [16]

    Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe–MnAl–C alloys. Scripta Metall Mater, 1994, 30(4): 505 doi: 10.1016/0956-716X(94)90611-4

    [17]

    Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 doi: 10.1016/j.scriptamat.2014.07.019

    [18]

    Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2013, 43(3): 438

    [19]

    Zhang F C, Fu R D, Qiu L, et al. Microstructure and property of nitrogen-alloyed high manganese austenitic steel under high strain rate tension. Mater Sci Eng A, 2008, 492(1-2): 255 doi: 10.1016/j.msea.2008.03.026

    [20]

    Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 doi: 10.1016/j.msea.2016.08.119

    [21]

    Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 doi: 10.1016/j.scriptamat.2012.09.030

    [22]

    Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 doi: 10.1016/j.msea.2015.11.103

    [23]

    Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 doi: 10.1016/j.scriptamat.2013.02.010

    [24]

    Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 doi: 10.1016/j.msea.2012.09.083

    [25]

    Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 doi: 10.1016/j.actamat.2014.10.032

    [26]

    Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 doi: 10.1016/j.msea.2015.12.057

    [27]

    Lee S, De Connman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 doi: 10.1002/srin.201500038

    [28]

    Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 doi: 10.1016/j.msea.2015.05.061

    [29]

    Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042

    [30]

    Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe–7.9Mn–0.14Si–0.05Al–0.07C steel. Materials, 2014, 7(12): 7891 doi: 10.3390/ma7127891

    [31]

    Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater, 2015, 84: 229 doi: 10.1016/j.actamat.2014.10.052

    [32]

    Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A, 2014, 45(12): 5624 doi: 10.1007/s11661-014-2504-x

    [33]

    Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A, 2017, 688: 40 doi: 10.1016/j.msea.2017.01.063

    [34]

    Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022

    [35]

    Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 doi: 10.1016/j.msea.2016.11.036

    [36]

    Lee S, Lee K, De Cooman B C. Observation of the TWIP +TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 doi: 10.1007/s11661-015-2854-z

    [37]

    He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177

    [38]

    Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 doi: 10.1016/j.actamat.2014.11.010

    [39]

    Zhou N P, Song R B, Li X, et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel. Mater Sci Eng A, 2018, 738: 153 doi: 10.1016/j.msea.2018.09.098

    [40]

    Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scripta Mater, 2018, 154: 30 doi: 10.1016/j.scriptamat.2018.05.016

    [41]

    Li X, Song R B, Zhou N P, et al. Microstructure and tensile behavior of Fe–8Mn–6Al–0.2C low density steel. Mater Sci Eng A, 2018, 709: 97 doi: 10.1016/j.msea.2017.10.039

    [42]

    Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085

    [43]

    Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 doi: 10.1007/s11661-011-1007-2

    [44]

    Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 doi: 10.1016/j.corsci.2014.02.018

    [45]

    Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038

    [46]

    Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater, 2014, 77: 236 doi: 10.1016/j.actamat.2014.05.057

    [47]

    Li J J, Song R B, Li X, et al. Coupling nano-carbide strengthening with transformation induced plasticity effect to achieve over 1.5 GPa strength with 30% ductility in cold-rolled medium-Mn steel. Vacuum, 2019, 167: 223 doi: 10.1016/j.vacuum.2019.06.015

    [48]

    Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn–Al type TRIP steel. Mater Sci Eng A, 2017, 698: 126 doi: 10.1016/j.msea.2017.05.058

    [49]

    Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of Kappa carbide precipitation and the effect of silicon addition. Metall Mater Trans A, 2014, 45(5): 2421 doi: 10.1007/s11661-014-2187-3

    [50]

    Heo Y U, Song Y Y, Park S J, et al. Influence of silicon in low density Fe–C–Mn–Al steel. Metall Mater Trans A, 2012, 43(6): 1731 doi: 10.1007/s11661-012-1149-x

    [51]

    Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater, 2015, 86: 182 doi: 10.1016/j.actamat.2014.12.021

    [52]

    Lee D, Kim J K, Lee S, et al. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A, 2017, 706: 1 doi: 10.1016/j.msea.2017.08.110

    [53]

    Lee S, Kang S H, Nam J H, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel. Metall Mater Trans A, 2019, 50(6): 2655 doi: 10.1007/s11661-019-05190-4

    [54]

    Shin S Y, Lee H, Han S Y, et al. Correlation of microstructure and cracking phenomenon occurring during hot rolling of lightweight steel plates. Metall Mater Trans A, 2010, 41(1): 138 doi: 10.1007/s11661-009-0081-1

    [55]

    Han S Y, Shin S Y, Lee H J, et al. Effects of annealing temperature on microstructure and tensile properties in ferritic lightweight steels. Metall Mater Trans A, 2012, 43(3): 843 doi: 10.1007/s11661-011-0942-2

    [56]

    Sohn S S, Lee B J, Lee S, et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel. Acta Mater, 2013, 61(15): 5626 doi: 10.1016/j.actamat.2013.06.004

    [57]

    Sohn S S, Lee B J, Kwak J H, et al. Effects of annealing treatment prior to cold rolling on the edge cracking phenomenon of ferritic lightweight steel. Metall Mater Trans A, 2014, 45(9): 3844 doi: 10.1007/s11661-014-2332-z

    [58]

    Sohn S S, Lee B J, Lee S, et al. Microstructural analysis of cracking phenomenon occurring during cold rolling of (0.1~ 0.7)C–3Mn–5Al lightweight steels. Met Mater Int, 2015, 21(1): 43 doi: 10.1007/s12540-015-1006-8

    [59]

    Xu R C, He Y L, Jiang H, et al. Microstructures and mechanical properties of ferrite-based lightweight steel with different compositions. J Iron Steel Res Int, 2017, 24(7): 737 doi: 10.1016/S1006-706X(17)30111-5

    [60]

    Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C–3.5Mn–5.8Al lightweight steel. Acta Mater, 2013, 61(13): 5050 doi: 10.1016/j.actamat.2013.04.038

    [61]

    Song H, Lee S G, Sohn S S, et al. Effect of strain-induced age hardening on yield strength improvement in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(11): 5372 doi: 10.1007/s11661-016-3706-1

    [62]

    Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater, 2014, 78: 181 doi: 10.1016/j.actamat.2014.06.059

    [63]

    Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe–Mn–Al–C steel. Scripta Mater, 2012, 66(8): 519 doi: 10.1016/j.scriptamat.2011.12.026

    [64]

    Sohn S S, Song H, Kim J G, et al. Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(2): 706 doi: 10.1007/s11661-015-3187-7

    [65]

    Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe–Mn–Al–C lightweight steels. JOM, 2014, 66(9): 1857 doi: 10.1007/s11837-014-1128-3

    [66]

    Park J, Jo M C, Jeong H J, et al. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels. Sci Rep, 2017, 7: 15726 doi: 10.1038/s41598-017-15991-5

    [67]

    Sohn S S, Song H, Kwak J H, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep, 2017, 7: 1927 doi: 10.1038/s41598-017-02183-4

    [68]

    Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans A, 2016, 47(6): 2674 doi: 10.1007/s11661-016-3433-7

    [69]

    Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and Coarse δ-Ferrite microstructure. Metall Mater Trans A, 2017, 48(4): 1678

    [70]

    Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J Alloys Compd, 2013, 574: 299 doi: 10.1016/j.jallcom.2013.05.138

    [71]

    Lee S, Jeong J, Lee Y K. Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe–9.3Mn–5.6Al–0.16C lightweight steel. J Alloys Compd, 2015, 648: 149 doi: 10.1016/j.jallcom.2015.06.048

    [72]

    Chen S P, Rana R, Haldar A, et al. Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002

    [73]

    Palm M, Inden G. Experimental determination of phase equilibria in the Fe–Al–C system. Intermetallics, 1995, 3(6): 443 doi: 10.1016/0966-9795(95)00003-H

    [74]

    Kimura Y, Handa K, Hayashi K, et al. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics, 2004, 12(6): 607 doi: 10.1016/j.intermet.2004.03.010

    [75]

    Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe–Mn–Al–C alloys. Scripta Metall Mater, 1994, 30(4): 499 doi: 10.1016/0956-716X(94)90610-6

    [76]

    Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys. Mater Chem Phys, 1999, 59(1): 96 doi: 10.1016/S0254-0584(99)00026-7

    [77]

    Ishida K, Ohtani H, Satoh N, et al. Phase Equilibria in Fe–Mn–Al–C Alloys. ISIJ Int, 1990, 30(8): 680 doi: 10.2355/isijinternational.30.680

    [78]

    Chin K G, Lee K J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd, 2010, 505(1): 217 doi: 10.1016/j.jallcom.2010.06.032

    [79]

    Bale C W, Belisle E, Chartrand P, et al. FactSage thermochemical software and databases-recent developments. Calphad, 2009, 33(2): 295 doi: 10.1016/j.calphad.2008.09.009

    [80]

    Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloy. Mater Sci Eng A, 2004, 387-389: 158 doi: 10.1016/j.msea.2004.01.059

    [81]

    Lee S, Estrin Y, De Cooman B C. Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe–12 pct Mn–0.6 pct C TWIP steel. Metall Mater Trans A, 2014, 45(2): 717 doi: 10.1007/s11661-013-2028-9

    [82]

    Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater, 2014, 68: 238 doi: 10.1016/j.actamat.2014.01.001

    [83]

    Lee Y K, Choi C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 doi: 10.1007/s11661-000-0271-3

    [84]

    Zambrano O A. Stacking fault energy maps of Fe–Mn–Al–C steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol, 2016, 138(4): 041010 doi: 10.1115/1.4033632

    [85]

    Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A, 2008, 483-484: 184 doi: 10.1016/j.msea.2006.12.170

    [86] 龙彩霞. Fe–20Mn–2.6Al–2.6Si TRIP/TWIP钢的力学性能和微观组织研究[学位论文]. 长沙: 湖南大学, 2012

    Long C X. Mechanical Properties and Microstructure of Fe–20Mn–2.6Al–2.6Si TRIP/TWIP Steel[Dissertation]. Changsha: Hunan University, 2012

    [87]

    Haidemenopoulos G N, Vasilakos A N. On the thermodynamic stability of retained austenite in 4340 steel. J Alloys Compd, 1997, 247(1-2): 128 doi: 10.1016/S0925-8388(96)02574-1

    [88]

    Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A, 2004, 35(8): 2331 doi: 10.1007/s11661-006-0213-9

    [89]

    Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature. Scripta Mater, 2009, 60(7): 493 doi: 10.1016/j.scriptamat.2008.11.043

    [90]

    Haidemenopoulos G N, Vasilakos A N. Modelling of austenite stability in low-alloy triple-phase steels. Steel Res, 1996, 67(11): 513 doi: 10.1002/srin.199605529

    [91]

    Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process. Mater Sci Eng A, 2011, 528(27): 8006 doi: 10.1016/j.msea.2011.07.008

    [92]

    Mi Z L, Tang D, Jiang H T, et al. Effects of annealing temperature on the microstructure and properties of the 25Mn–3Si–3Al TWIP steel. Int J Miner Metall Mater, 2009, 16(2): 154 doi: 10.1016/S1674-4799(09)60026-1

    [93] 胡超, 杨钢, 聂学青, 等. TWIP效应分析. 钢铁, 2010, 45(8):70

    Hu C, Yang G, Nie X Q, et al. Analysis of TWIP effect. Iron Steel, 2010, 45(8): 70

    [94]

    Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel. Mater Sci Eng A, 2017, 687: 200 doi: 10.1016/j.msea.2017.01.055

图(13)  /  表(1)
计量
  • 文章访问数:  4154
  • HTML全文浏览量:  1687
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 网络出版日期:  2020-03-05
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回