缝槽水压爆破破岩载荷实验研究

Experimental study on rock-breaking load in slot-hydraulic blasting

  • 摘要: 针对缝槽爆破中以空气作为不耦合介质,其冲击波和准静态压力较小、炸药能量利用率低、破岩能力弱的问题,提出缝槽水压爆破方法。利用水的微压缩性,以及传能效率高等特点,以水作为炮孔不耦合介质,提升缝槽爆破破岩载荷,开展其爆破破岩载荷特征研究。通过自主研发的缝槽爆破载荷测试实验系统,分别开展缝槽空气不耦合爆破和缝槽水压爆破实验。结果表明:水作为缝槽爆破不耦合介质,其冲击波压力峰值约是缝槽空气不耦合爆破的35倍,冲击波压力上升沿更平缓,入射效率更高;其准静态压力峰值是缝槽空气不耦合爆破的37~46倍,水压爆破的准静态压力压降缓慢,保压时间更长。研究表明,缝槽水压爆破的炸药能量利用率高,爆炸载荷提升明显。上述研究成果有助于深入认识缝槽水压爆破破岩载荷特性,同时对该方法的工程应用提供理论和实验支撑。

     

    Abstract: Slot blasting is widely used in mining and tunnel construction, municipal demolition, water conservation, hydropower, and other related projects due to its low cost and high efficiency. In the slot-blasting technique, it is necessary to break the rock efficiently and minimize the damage to the area surrounding the rock. Therefore, improving the blasting efficiency and explosive energy utilization rate as well as reducing the blasting vibration and excessive crushing of rocks are of great significance to the development of blasting engineering. When air spaced uncoupling medium is used in slot blasting, its rock-breaking efficiency is significantly low due to various factors such as generation of shock waves, low quasi-static pressure, low energy utilization rate of explosive, and weak rock-breaking ability. To improve the rock-breaking load of slot blasting, the slot-hydraulic blasting method was proposed. In this method, water is utilized as the uncoupling medium for slot blasting as water has better microcompressibility and high energy transfer efficiency; in addition, research on its characteristics under rock-breaking load was investigated. Slot blasting with air spaced uncoupling charge and slot-hydraulic blasting tests were carried out under the independently developed slot blast load test system. The test results show that the shockwave pressure of slot-hydraulic blasting tests is approximately 35 times that of the air uncoupling blasting method because of the generation of high-pressure shockwaves and the higher incident efficiency. The hydraulic blasting quasi-static pressure is 37–46 times that of the air spaced uncoupled blasting, the quasi static pressure drop of hydraulic blasting is slow, and the pressure holding time is longer. The research results reveal that the energy utilization rate in the slot-hydraulic blasting is high and the blasting load improvement is significant. These results may help to better understand the rock-breaking load characteristics of slot-hydraulic blasting and provide theoretical and experimental support for utilizing the method in engineering applications.

     

/

返回文章
返回