组织形态对718塑料模具钢切削性能的影响

Machinability analysis of microstructures in pre-hardening plastic mold steel 718

  • 摘要: 通过热处理制备出具有回火马氏体组织、下贝氏体组织以及粒状贝氏体组织的718钢,利用光学显微镜、扫描电子显微镜、X射线衍射仪、万能拉伸实验机比较其显微组织及力学性能。同时借助高速铣削实验及光学轮廓仪,研究力学性能以及组织结构对切削性能的影响。结果表明,当切削速度低于145 m·min−1时,贝氏体组织类型比回火马氏体组织更易切削,切削贝氏体组织比切削回火马氏体组织的刀具使用寿命高30%~40%。当切削速度高于165 m·min−1时,马氏体组织发生了加工软化现象,刀具使用寿命提高,切削性能上升。粒状贝氏体组织加工表面因为严重的刀具黏附而出现背脊纹路,马氏体组织具有最佳的切削表面粗糙度。综合考虑之下,三种组织的综合切削性能从高到低排序为:下贝氏体组织、马氏体组织、粒状贝氏体组织,采用300 ℃等温淬火工艺可以有效提升718塑料模具钢的综合切削性能。

     

    Abstract: Owing to strict dimension accuracy demands, pre-hardening treatment has been widely used in the mold for production of large plastic parts. However, the large volume of mold leads to the existence of tempered martensite and bainite structure on the cross section by pre-hardened heat treatment, and the uneven structure makes great influences on the cutting performance of the pre-hardening plastic mold steel. For service materials, machinability is affected by strength, work temperature, cutting conditions, plastic deformation, phase. Pioneering researchers tended to focus on the influences of temperature, cutting conditions and little is known about the effect of different microstructures in same materials. In this work, 718 steels with tempered martensite, lower bainite and grain bainite structures were prepared by heat treatment. The microstructures and mechanical properties were characterized by optical microscopy, scanning electron microscopy, X-ray diffractometer and universal tensile testing machine. Meanwhile, the effects of mechanical properties and structure on processing properties were studied by high-speed milling experiments and optical profilometer. The results show that when the cutting speed was lower than 145 m·min−1, the bainite was easier to cut than tempered martensite, and the life of tool cutting for bainite was 30%‒40% higher than life of tool cutting for tempered martensite. When the cutting speed was higher than 165 m·min−1, tempered martensite microstructure worked softening and the life of tool cutting for it increased, moreover, its workability advanced. The ridges were observed on the milling surface of grain bainite because of severe tool adhesion and tempered martensite structure has the best milling surface roughness. Under consideration, the comprehensive machinability of the three kinds of microstructure are ranked from high to low: lower bainite structure, martensite structure and granular bainite structure. The adoption of 300 ℃ austempering process can effectively improve the synthesis cutting performance of 718 plastic die steel.

     

/

返回文章
返回