-
摘要: 为控制Incoloy825合金中的Al、Ti含量,并减少电渣过程中氟化物的挥发。借助FactSage热力学软件,建立渣−金反应的热力学模型。设计出适宜控制Al、Ti含量的低氟渣系,探究了渣中组元与Al2O3和TiO2活度比的关系,并通过高温渣–金平衡实验进行验证。结果表明:当渣中CaO和Al2O3含量增加,导致
$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ 值升高,即合金中Ti含量降低,Al含量升高;与此相反,渣中TiO2含量升高,使$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ 值降低,即Ti含量增加,Al含量减少;渣中CaF2和MgO含量的增加对$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ 的影响较小。合金中Al、Ti含量相差较大时,合金中Ti元素易氧化;Al、Ti含量相差较小时,Al元素易氧化。渣中CaO的质量分数为30%~33%、Al2O3的质量分数为30%~33%、TiO2的质量分数为6%~12%、CaF2的质量分数为20%~30%、MgO的质量分数为1%~5%时,能够有效控制合金中Al、Ti元素含量。-
关键词:
- 热力学 /
- 电渣重熔 /
- Incoloy825合金 /
- FactSage /
- 活度比
Abstract: Incoloy825 alloy is extensively used in the aerospace and petrochemical industries owing to its excellent corrosion resistance and mechanical properties. It is a solid solution-strengthened Fe−Cr−Ni-based corrosion-resistant alloy. The changes in the Al and Ti contents of the alloy determine the precipitation temperature of the strengthening phases γ '(Ni3AlTi) and Ti (C, N) in the alloy. At present, the main production methods of Incoloy825 alloy are vacuum melting and electroslag remelting. However, owing to the reaction of the components in the slag with the Al and Ti elements in the alloy during the electroslag remelting process, the axial component distribution of the Al and Ti elements in the electroslag ingot is not homogeneous, which seriously affects the quality of the electroslag ingot. It is necessary to control the Al and Ti contents in Incoloy825 alloy and reduce the volatilization of fluoride during the electroslag remelting process. The thermodynamic model of slag metal reaction was established using FactSage thermodynamic software. A low-fluorine slag system suitable for controlling Al and Ti contents was designed, and the relationship between the components in the slag and the activity ratios of Al2O3 and TiO2 was studied, the result was verified by a high-temperature slag metal equilibrium experiment. The results show that the CaO and Al2O3 contents in slag increases with increase in the$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ value, while the Ti content in the alloy decreases with increasing Al content. Moreover, as the TiO2 content in the slag increases, the$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ value decreases, Ti content increases and Al content decreases. The CaF2 and MgO contents in the slag increase have a little effect with the$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ value. When the difference between the Al and Ti contents in the alloy is large, the elemental Ti in the alloy is easy to be oxidized; when difference between the Al and Ti contents is small, the elemental Al is easy to be oxidized. When the mass percent of CaO and Al2O3 in the slag are 30%−33% respectively, the mass percent of TiO2 is 6%−12%, the mass percent of CaF2 is 20%−30%, the mass percent of MgO is 1%−5%, the Al and Ti contents in the alloy can be controlled.-
Keywords:
- thermodynamics /
- electroslag remelting /
- Incoloy825 alloy /
- FactSage /
- activity ratio
-
-
图 1 渣中组元与
$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ 的关系。(a) CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2Figure 1. Relationship between component in slag and
$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ : (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2表 1 Incoloy825合金中组元的活度相互作用系数[23-24]
Table 1 Activity interaction coefficient of the alloying elements in Incoloy825 alloy
$e_i^j$ Mn Cr Ni Al Ti Cu Mo Al 0.034 0.045 −0.0376 0.040 Ti −0.12 0.025 −0.0166 0.048 0.014 0.016 表 2 Incoloy825合金成分(质量分数)
Table 2 Chemical composition of the Incoloy825 alloy
% C Mn Si P S Cr Mo Ni Cu Al Ti Fe ≤0.025 ≤1.0 ≤0.5 19.5‒23.5 2.5‒3.5 38‒46 1.5‒3.0 ≤0.2 0.6‒1.2 bal 0.010 0.107 0.131 0.009 0.009 20.620 3.180 38.880 1.660 0.120 1.000 bal. 表 3 渣–金反应前后渣成分
Table 3 Composition of slag before and after slag-metal reaction
% Slag Before reaction After reaction CaF2 CaO Al2O3 MgO TiO2 CaF2 CaO Al2O3 MgO TiO2 S1 25.0 33.0 33.0 3.0 6.0 19.6 37.2 31.4 4.2 7.6 S2 25.0 31.0 31.0 3.0 10.0 19.8 36.3 30.2 4.1 9.5 S3 25.0 30.0 30.0 3.0 12.0 20.1 35.5 29.4 4.2 10.8 -
[1] 李星, 耿鑫, 姜周华, 等. 电渣重熔高温合金渣系对冶金质量的影响. 钢铁, 2015, 50(9):41 Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50(9): 41
[2] 段生朝, 郭汉杰, 石骁, 等. Inconel 718高温合金电渣重熔热力学分析. 工程科学学报, 2018, 40(增刊1): 53 Duan S C, Guo H J, Shi X, et al. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process. Chin J Eng, 2018, 40(Suppl 1): 53
[3] Hou D, Jiang Z H, Dong Y W, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
[4] Hou D, Jiang Z H, Qu T P, et al. Aluminum, titanium and oxygen control during electroslag remelting of stainless steel based on thermodynamic analysis. J Iron Steel Res Int, 2019, 26(1): 20 doi: 10.1007/s42243-018-0107-2
[5] 侯栋, 董艳伍, 姜周华, 等. 含铝钛合金电渣重熔中的渣系设计及脱氧热力学. 东北大学学报:自然科学版, 2015, 36(11):1591 Hou D, Dong Y W, Jiang Z H, et al. Deoxidation thermodynamics and slag designing in ESR process for aluminum-titannium alloy. J Northeast Univ Nat Sci, 2015, 36(11): 1591
[6] Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8: 5232 doi: 10.1038/s41598-018-23556-3
[7] 孙楠, 温宸, 刘子利, 等. Al、Ti含量对锻态Incoloy825合金组织和耐腐蚀性能的影响. 稀有金属材料与工程, 2018, 47(3):860 Sun N, Wen C, Liu Z L, et al. Effect of Al, Ti contents on the microstructure and corrosion resistance of as-forged Incoloy825 alloy. Rare Met Mater Eng, 2018, 47(3): 860
[8] 陈崇禧, 王涌, 傅杰, 等. 高钛低铝高温合金电渣重熔中钛烧损的研究. 金属学报, 1981, 17(1):50 Chen C X, Wang Y, Fu J, et al. A study on the titanium loss during electroslag remelting high titanium and low aluminum content superally. Acta Metall Sinica, 1981, 17(1): 50
[9] 粟硕. R-26合金电渣重熔Ti含量控制研究. 钢铁研究学报, 2011, 23(增刊2): 282 Su S. Research on control of Ti content in electroslag remelting of R-26. J Iron Steel Res, 2011, 23(Suppl 2): 282
[10] Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electroslag remelting (ESR) process. Metall Mater Trans B, 2017, 48(4): 2147 doi: 10.1007/s11663-017-0994-9
[11] 王海江, 徐朋, 杨松. 氩气流量、渣系和加Al粉对1Cr21Ni5Ti钢保护气氛重熔锭[Ti]的影响. 特殊钢, 2015, 36(6):23 doi: 10.3969/j.issn.1003-8620.2015.06.007 Wang H J, Xu P, Yang S. Effect of argon flow rate, slag series and adding aluminium on[Ti] of shielding atmosphere ESR ingot of steel 1Cr21Ni5Ti. Special Steel, 2015, 36(6): 23 doi: 10.3969/j.issn.1003-8620.2015.06.007
[12] 尹彬, 李万明, 吴少鹏, 等. Inconel718高温合金电渣重熔铝钛元素烧损热力学分析. 钢铁, 2019, 54(5):86 Yin B, Li W M, Wu S P, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel 718 superalloy. Iron Steel, 2019, 54(5): 86
[13] Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification. ISIJ Int, 2017, 57(4): 713 doi: 10.2355/isijinternational.ISIJINT-2016-655
[14] Duan S C, Shi X, Wang F, et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process. Metall Mater Trans B, 2019, 50(6): 3055 doi: 10.1007/s11663-019-01665-2
[15] Hou D, Liu F B, Qu T P, et al. Behavior of alloying elements during drawing-ingot-type electroslag remelting of stainless steel containing titanium. ISIJ Int, 2018, 58(5): 876 doi: 10.2355/isijinternational.ISIJINT-2017-687
[16] 姜开友, 秦文华, 王超洋. 电渣重熔车间工作场所职业病危害因素检测分析. 中国工业医学杂志, 2018, 31(3):220 Jiang K Y, Qin W H, Wang C Y. Analysis on detection result of occupational hazards in workplaces of electroslag remelting workshop. Chin J Ind Med, 2018, 31(3): 220
[17] 巨建涛, 吕振林, 焦志远, 等. CaF2‒SiO2‒CaO渣系的非等温挥发行为. 过程工程学报, 2012, 12(4):618 Ju J T, Lv Z L, Jiao Z Y, et al. Non-isothermal analysis on the evaporation behavior of CaF2‒SiO2‒CaO system slag. Chin J Process Eng, 2012, 12(4): 618
[18] Zhao J X, Chen Y M, Li X M, et al. Mechanism of slag composition change during electroslag remelting process. J Iron Steel Res Int, 2011, 18(10): 24 doi: 10.1016/S1006-706X(12)60017-X
[19] 赵俊学, 卢亮, 赵忠宇, 等. 电渣重熔用五元高氟渣高温挥发机制. 钢铁, 2019, 54(6):43 Zhao J X, Lu L, Zhao Z Y, et al. Volatilization mechanism of ESR slag with high fluoride under high-temperature. Iron Steel, 2019, 54(6): 43
[20] 茅洪祥, 李正邦. 低氟渣及无氟渣电渣重熔研究. 钢铁研究总院学报, 1983, 3(4):597 Mao H X, Li Z B. A metallurgical study on low fluorine and fluorine-free slag for electroslag remelting. J Iron Steel Res, 1983, 3(4): 597
[21] Shi C B, Shin S H, Zheng D L, et al. Development of low-fluoride slag for electroslag remelting: role of Li2O on the viscosity and structure of the slag. Metall Mater Trans B, 2016, 47(6): 3343 doi: 10.1007/s11663-016-0826-3
[22] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3‒CaO‒CaF2 slags in the ESR Process. J Vac Sci Technol, 1972, 9(6): 1318 doi: 10.1116/1.1317029
[23] Karasev A V, Suito H. Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M(M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
[24] Pak J J, Jeong Y S, Tae S J, et al. Thermodynamics of titanium and nitrogen in an Fe‒Ni melt. Metall Mater Trans B, 2005, 36(4): 489 doi: 10.1007/s11663-005-0040-1
[25] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
[26] Zheng D L, Li J, Shi C B, et al. Crystallization characteristics and in-mold performance of electroslag remelting-type TiO2-bearing slag. Metall Mater Trans B, 2019, 50(3): 1148 doi: 10.1007/s11663-019-01536-w
[27] Shi C B, Zheng D L, Shin S H, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2017, 24(1): 18 doi: 10.1007/s12613-017-1374-9
[28] 陈艳梅, 赵俊学, 樊君, 等. 电渣重熔过程中渣成分变化的研究. 特殊钢, 2010, 31(6):7 doi: 10.3969/j.issn.1003-8620.2010.06.003 Chen Y M, Zhao J X, Fan J, et al. A study on variations of slag ingredient during electroslag remelting process. Special Steel, 2010, 31(6): 7 doi: 10.3969/j.issn.1003-8620.2010.06.003