溜井储矿段矿岩散体运移轨迹及速度预测模型

马驰, 路增祥, 殷越, 曹朋

马驰, 路增祥, 殷越, 曹朋. 溜井储矿段矿岩散体运移轨迹及速度预测模型[J]. 工程科学学报, 2021, 43(5): 627-635. DOI: 10.13374/j.issn2095-9389.2020.03.31.002
引用本文: 马驰, 路增祥, 殷越, 曹朋. 溜井储矿段矿岩散体运移轨迹及速度预测模型[J]. 工程科学学报, 2021, 43(5): 627-635. DOI: 10.13374/j.issn2095-9389.2020.03.31.002
MA Chi, LU Zeng-xiang, YIN Yue, CAO Peng. Prediction model for the migration trajectory and velocity of ore-rock dispersions in an orepass storage section[J]. Chinese Journal of Engineering, 2021, 43(5): 627-635. DOI: 10.13374/j.issn2095-9389.2020.03.31.002
Citation: MA Chi, LU Zeng-xiang, YIN Yue, CAO Peng. Prediction model for the migration trajectory and velocity of ore-rock dispersions in an orepass storage section[J]. Chinese Journal of Engineering, 2021, 43(5): 627-635. DOI: 10.13374/j.issn2095-9389.2020.03.31.002

溜井储矿段矿岩散体运移轨迹及速度预测模型

基金项目: 国家自然科学基金资助项目(51774176)
详细信息
    通信作者:

    路增祥: E-mail:zengxiang_lu@sohu.com

  • 分类号: TD853

Prediction model for the migration trajectory and velocity of ore-rock dispersions in an orepass storage section

More Information
  • 摘要: 为准确预测溜井储矿段内矿岩散体运移状态,以放矿漏斗中心线与溜井中心线重合的溜井结构为研究对象,建立了溜井储矿段矿岩运移轨迹和速度预测模型。首先,根据筒仓卸载过程中颗粒运动特点和理想流体流动单元流动特点的相似性,分析储矿段内矿岩运移规律;其次,引用流动网络概念和Beverloo经验公式,建立了储矿段矿岩运移网络,分析了储矿段矿岩运动截面与矿岩运移速度的关系;最后,在一定的假设条件下,根据流线和等位面分布特征,建立了矿岩位移、运移轨迹和速度方程。研究结果表明:(1)矿岩进入储矿段后依次经过匀速区、变速区,分别进行匀速直线下向运动、变速曲线运动;(2)当放矿口倾角较小时存在平衡区,该区域下矿岩不发生位移,导致“空环效应”;(3)单位时间内放出矿岩质量和穿过同一等位面的矿岩质量相等。所建立的预测模型表明,匀速区内矿岩运移状态与储矿段和放矿口断面直径、矿岩粒径等有关,变速区内矿岩运移状态还与矿岩所处位置、放矿口倾角等有关。
    Abstract: For the accurate prediction of the migration state of ore-rock dispersions in the ore pass storage section, a prediction model of an ore pass trajectory and velocity was established by taking the orepass structure, which coincided the centerlines of the ore drawing funnel, and the orepass as the research objects. First, during the silo unloading process, the movement law of ore-rock dispersions in the ore-storage section was analyzed according to the similarity of the particles’ movement characteristics and the flow characteristics of an ideal fluid flow unit. Next, the ore-rock migration network was established based from the flow network concept and the Beverloo empirical formula. Analysis was then conducted on the relationship between the section and the velocity of the ore-rock movement in the ore-storage section of ore pass. Finally, under certain assumed conditions, the displacement equation, the migration trajectory, and the velocity of the ore-rock moving in the ore-storage section were established according to the distribution characteristics of streamline and equipotential surface. Results reveal that after entering the ore-storage section of the ore pass, the ore-rock will pass through two speed zones: (1) a uniform speed zone leading to a uniform linear downward motion and (2) a variable speed zone leading to a variable speed curve motion. When the dip angle of the ore draw-hole is small, an “empty ring effect” is achieved, where no displacement of the lower ore-rock is observed. Finally, the quality of the ore-rock drawing-out in a unit time is found to be equal to that of the ore-rock passing through the same equipotential surface. The predicting model reveals the dependency of the ore-rock migration state in the uniform speed zone with a number of parameters such as the diameter of the section of ore-storage and ore-discharge, ore-rock particle size. Conversely, the ore-rock migration state in the variable speed zone is mainly related to the ore-rock’s location and the inclination angle of ore draw-hole.
  • 图  1   筒仓卸载过程中颗粒运动迹线(1—筒仓边界;2—放出口;3—颗粒运动迹线;4—卸料死区)

    Figure  1.   Particle movement trace during the silo unloading (1—the boundary of the silo; 2—ore draw hole; 3—particle movement trajectory; 4—discharge dead zone)

    图  2   直流管中理想流体流动特征(1—直流管边界; 2—放出口; 3—流动单元运动迹线)

    Figure  2.   Ideal fluid flow characteristics in a straight pipe (1—boundary of straight pipe; 2—ore draw hole; 3—movement trajectory of flow unit)

    图  3   流动网络(1—边界;2—流线;3—等位线)

    Figure  3.   Flow network (1—boundary; 2—streamline; 3—equipotential line)

    图  4   溜井储矿段矿岩运移规律(1—溜井储矿段边界;2—流线; 3—矿岩匀速运动区;4—矿岩变速运动区;5—平衡区)。(a)无平衡区时;(b)有平衡区时

    Figure  4.   Ore-rock migration law in the ore-storage section of orepass (1—boundary of ore-storage section in orepass; 2—streamline; 3—uniform velocity area of ore-rock motion; 4—variable speed area of ore-rock motion; 5—equilibrium area): (a) nonequilibrium area; (b) equilibrium area

    图  5   储矿段矿岩运移网络(1—边界;2—滑动边界;3—流线;4—等位面;5—分界等位面)

    Figure  5.   Ore-rock migration network in ore storage section (1—boundary; 2—sliding boundary; 3—streamline; 4—equipotential surface; 5—demarcation equipotential surface)

    图  6   匀速区内矿岩运移过程分析

    Figure  6.   Analysis of ore-rock moving in the uniform velocity zone

    图  7   变速区内矿岩运移过程分析(1—流线;2—等位面;3—滑动边界)

    Figure  7.   Migration process analysis of ore-rock in variable speed zone (1—streamline; 2—equipotential surface; 3—sliding boundary)

    图  8   储矿区内矿岩运移过程分析(1—流线;2—等位面;3—滑动边界)

    Figure  8.   Analysis on ore-rock moving in the storage section in ore pass (1—streamline; 2—equipotential surface; 3—sliding boundary)

  • [1] 路增祥, 马驰, 殷越. 冲击磨损作用下的溜井井壁变形破坏机理. 金属矿山, 2018(11):37

    Lu Z X, Ma C, Yin Y. Mechanism of deformation and failure on orepass wall under impact and wear. Met Mine, 2018(11): 37

    [2] 路增祥, 马驰, 曹朋, 等. 金属矿山溜井问题研究现状及方向. 金属矿山, 2019(3):1

    Lu Z X, Ma C, Cao P, et al. Study status and direction of orepass existing problems in metal mine. Met Mine, 2019(3): 1

    [3]

    Esmaieli K, Hadjigeorgiou J, Grenon M. Stability analysis of the 19A ore pass at Brunswick mine using a two-stage numerical modeling approach. Rock Mech Rock Eng, 2013, 46(6): 1323 doi: 10.1007/s00603-013-0371-1

    [4]

    Hart R. Case study of the rockpass system at Kloof No. 3 Shaft. J South Afr Inst Min Metall, 2006, 106(1): 1

    [5]

    López-Rodríguez D, Zuriguel I, Maza D. Clogging of granular material in vertical pipes discharged at constant velocity. EPJ Web Conf, 2017, 140: 03033 doi: 10.1051/epjconf/201714003033

    [6] 刘艳章, 张丙涛, 叶义成, 等. 主溜井矿石运移及井壁破坏特征的相似试验研究. 采矿与安全工程学报, 2018, 35(3):545

    Liu Y Z, Zhang B T, Ye Y C, et al. Similarity testing study on characteristics of ore motion and wall damage in mine shaft. J Min Saf Eng, 2018, 35(3): 545

    [7] 魏子昌, 占森昌, 杨树本, 等. 对德兴铜矿1号溜井矿石移动规律及其磨损的考察. 金属矿山, 1984(8):7

    Wei Z C, Zhan S C, Yang S B, et al. Investigation on ore movement and wear of No. 1 orepass in Dexing Copper Mine. Met Mine, 1984(8): 7

    [8] 郭宝昆, 张福珍. 矿石在溜井各区内的移动特点及其分析. 黄金, 1985(3):20

    Guo B K, Zhang F Z. Characteristics and analysis of ore moving in each area of orepass. Gold, 1985(3): 20

    [9] 谭志恢. 对溜井放矿矿岩散体运动之浅议. 金属矿山, 1987(2):24

    Tan Z H. A brief discussion on the ore-rock movement in orepass drawing. Met Mine, 1987(2): 24

    [10] 王其飞. 金山店铁矿主溜井内矿石运移及井壁磨损特征研究[学位论文]. 武汉: 武汉科技大学, 2015

    Wang Q F. Motion Characteristics of Ore and Wearing Characteristics of Wall at Main Ore-Pass in Jinshandian Iron Mine [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2015

    [11] 孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展, 2008, 38(1):87 doi: 10.3321/j.issn:1000-0992.2008.01.006

    Sun Q C, Wang G Q. Review on granular flow dynamics and its discrete element method. Adv Mech, 2008, 38(1): 87 doi: 10.3321/j.issn:1000-0992.2008.01.006

    [12] 孙浩, 金爱兵, 高永涛, 等. 多放矿口条件下崩落矿岩流动特性. 工程科学学报, 2015, 37(10):1251

    Sun H, Jin A B, Gao Y T, et al. Flow characteristics of caved ore and rock in the multiple draw-point condition. Chin J Eng, 2015, 37(10): 1251

    [13] 陈庆发, 陈青林, 仲建宇, 等. 柔性隔离层下单漏斗散体矿岩流动规律. 工程科学学报, 2016, 38(7):893

    Chen Q F, Chen Q L, Zhong J Y, et al. Flow pattern of granular ore rock in a single funnel under a flexible isolation layer. Chin J Eng, 2016, 38(7): 893

    [14] 李涛. 崩落法放矿过程中散体矿岩运移规律研究[学位论文]. 北京: 北京科技大学, 2018

    Li T. Study on the Migration Law of Granular Ore-Rock under Draw by Caving Method [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    [15] 李伟, 刘艳章, 邹晓甜, 等. 溜井放矿过程中贮矿段井壁动态应力分布特征研究. 金属矿山, 2018(9):47

    Li W, Liu Y Z, Zou X T, et al. Research on distribution characteristics of wall dynamic stress at ore storage section of ore-pass during ore-drawing. Met Mine, 2018(9): 47

    [16]

    Finnemore E J, Franzini J B. Fluid Mechanics with Engineering Applications. 10th Ed. New York City: McGraw-Hill Science/Engineering/Math, 2001

    [17]

    Williams J C. The rate of discharge of coarse granular materials from conical mass flow hoppers. Chem Eng Sci, 1977, 32(3): 247 doi: 10.1016/0009-2509(77)80202-9

    [18] 吴清松, 胡茂彬. 颗粒流的动力学模型和实验研究进展. 力学进展, 2002, 32(2):250 doi: 10.3321/j.issn:1000-0992.2002.02.009

    Wu Q S, Hu M B. Advances on dynamic modeling and experimental studies for granular flow. Adv Mech, 2002, 32(2): 250 doi: 10.3321/j.issn:1000-0992.2002.02.009

    [19] 王宁生. 二维通道中颗粒物质流动行为研究[学位论文]. 上海: 华东理工大学, 2019

    Wang N S. Study on Flow Behaviours of Granular Matter in A Two-Dimensional Channel[Dissertation]. Shanghai: East China University of Science and Technology, 2019

    [20]

    Brown C L, Richards J C. Principles of Powder Mechanics: Essays on the Packing and Flow of Powders and Bulk Solids. Oxford: Pergamon Press, 1970

    [21] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析. 物理学报, 2019, 68(13):224

    Zhou Y X. Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law. Acta Phys Sin, 2019, 68(13): 224

    [22]

    Beverloo W A, Leniger H A, van de Velde J. The flow of granular solids through orifices. Chem Eng Sci, 1961, 15(3-4): 260 doi: 10.1016/0009-2509(61)85030-6

    [23]

    Janda A, Zuriguel I, Maza D. Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys Rev Lett, 2012, 108(24): 248001 doi: 10.1103/PhysRevLett.108.248001

    [24]

    Benyamine M, Aussillous P, Dalloz-Dubrujeaud B. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle. EPJ Web Conf, 2017, 140: 03043 doi: 10.1051/epjconf/201714003043

    [25] 希伯勒 R C. 动力学. 李俊峰, 袁长清, 吕敬, 译. 北京: 机械工业出版社, 2014

    Hibbeler R C. Dynamics. Translated by Li J F, Yuan C Q, Lü J. Beijing: Mechanical Industry Press, 2014

图(8)
计量
  • 文章访问数:  1499
  • HTML全文浏览量:  689
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 网络出版日期:  2020-09-02
  • 发布日期:  2021-05-24

目录

    /

    返回文章
    返回