Abstract:
Metal sulfides are highly desirable owing to their semiconductor properties promoting electrochemical reactions for sulfide flotation. As the most common sulfide mineral, pyrite is found in coal and can contain a small amount of gold. The potential of electrochemical reactions for the beneficiation of pyrite makes it necessary to study its electrochemical behavior. The present work focuses on the electrochemical behavior and working mechanisms of pyrite in mineral processing. The effects of the structural characteristics of pyrite, oxidation in solution, the presence of metal ions, and inhibitors on the electrochemical behavior of pyrite were discussed emphatically. The effects of galvanic interaction and grinding medium shape, material, and atmosphere on the electrochemistry of pyrite in grinding were also discussed. It has been shown that the different crystal structures and semiconductor properties of pyrite can greatly influence the oxidation of its surface, which indirectly affects its floatability. Moreover, moderate oxidation conditions are beneficial to the collector-free flotation of pyrite, whereas strong reduction or oxidation potentials inhibit its flotation. It has also been shown that increase in potential and iron oxide on the pyrite surface lead to the decrease in the concentration of copper (Cu
+) ions, thereby adversely affecting the activation of pyrite by copper. Furthermore, inhibitors can directly participate in the redox reaction between the collector and pyrite, thus inhibiting the flotation of pyrite. Different grinding media and atmosphere conditions also affect the electrochemical behavior of pyrite.