Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller
-
摘要: 针对平整轧制过程不同用途带钢对表面微观形貌的特殊要求,在批量跟踪电火花毛化轧辊、磨削轧辊和冷轧后带钢表面微观形貌的基础上,建立工作辊与带钢都可考虑真实表面粗糙峰的带钢表面微观形貌轧制转印生成模型,采用工业实验验证了仿真模型的准确性,并据此模型分析轧制前带钢已经具有表面粗糙度分别大于、等于、小于轧辊表面粗糙度时,带钢表面微观形貌的轧制转印行为与遗传演变规律。提出了负转印和转印饱和的概念,定义了两种极限轧制转印状态的描述指标— —负转印最大和转印饱和,研究发现当带钢表面粗糙度小于或等于轧辊表面粗糙度时,存在负转印最大点和转印饱和点;当带钢表面粗糙度大于轧辊表面粗糙度时,负转印最大点和转印饱和点重合。在此基础上,采用负转印最大点与转印饱和点对应的临界板宽轧制力,描述带钢表面微观形貌的遗传及演变规律,并系统仿真分析带钢屈服强度、带钢轧前表面粗糙度、轧辊表面粗糙度等工艺条件参数对于负转印最大点与转印饱和点对应的临界单位板宽轧制力的影响规律,发现随着带钢屈服强度增大和轧辊表面粗糙度增加,该临界单位板宽轧制力均增大;随着带钢表面粗糙度增大,负转印最大点对应的临界单位板宽轧制力增大,但转印饱和点对应的临界单位板宽轧制力却减小。Abstract: To meet special requirements and respond to control problems of surface micromorphology of different strips in skin rolling process, a rolling transfer generation model of the surface micromorphology contact between work roll and actual rough surface of strip was established on the basis of batch tracing the surface micromorphology of electric discharge textured roll, grinding roll and cold rolled strip. The inheritance and evolution of surface micromorphology of the strip was analyzed based on the generation model and the accuracy of the generation model was verified by industrial experiments. The concepts of negative transfer and transfer saturation were proposed, and the descriptive indicators for two extreme rolling transfer status (the maximum negative transfer and transfer saturation) were defined. When strip surface roughness is equal to or less than that of roll, a maximum negative transfer point and transfer saturation point exist, while when strip surface roughness is greater than that of roll, the maximum negative transfer point is in superposition with the transfer saturation point. Under the above precondition, through the rolling force of critical strip width, which corresponds to the maximum negative transfer point and transfer saturation point, the inheritance and evolution of surface micromorphology of the strip were characterized. The effect of strip yield strength, strip surface roughness, and roll surface roughness on the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point were also analyzed. Results show that with the increase of strip yield strength and roll surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point increases. With the increase of strip surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point increases, and the rolling force of critical strip width corresponding to transfer saturation point decreases.
-
-
图 8 工作辊Ra > 带钢Ra时不同影响因素对负转印最大点对应临界单位板宽轧制力的影响。(a)工作辊表面粗糙度;(b)入口带钢表面粗糙度
Figure 8. Influence of different factors on the critical rolling force per unit width at the maximum point of negative transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip
图 10 工作辊Ra > 带钢Ra时不同影响因素对轧制转印饱和点对应临界单位板宽轧制力的影响。(a)工作辊表面粗糙度;(b)入口带钢表面粗糙度
Figure 10. Influence of different factors on the critical rolling force per unit width at the saturation point of rolling transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip
表 1 两种典型带钢表面微观形貌轧制与板宽方向二维轮廓粗糙度参数
Table 1 Roughness parameters of two-dimensional profile along the width and rolling direction of two kinds of typical strip surface microtopography
Roughness parameters Coordinatesaxis Electrical discharge machining Grinding machine 1 2 3 4 Mean value 1 2 3 4 Mean value Ra/μm X-axis 1.18 1.02 1.05 0.99 1.06 0.58 0.57 0.49 0.52 0.54 Y-axis 1.21 1.04 1.01 1.08 1.08 0.32 0.22 0.34 0.20 0.27 Rz/μm X-axis 5.78 5.82 5.89 6.43 5.98 4.23 4.37 4.82 5.10 4.63 Y-axis 6.21 5.97 6.05 6.20 6.11 2.01 2.34 2.81 2.45 2.40 Ry/μm X-axis 6.09 5.98 6.05 6.45 6.14 4.35 4.43 4.87 5.14 4.70 Y-axis 6.30 6.28 6.12 6.39 6.27 2.10 2.44 3.01 2.76 2.58 Pc/cm−1 X-axis 60 45 56 52 53 97 82 87 80 87 Y-axis 55 55 43 50 51 107 95 117 90 102 表 2 工业实验工况表
Table 2 Industrial experiment condition
Working
conditionIncoming strip
Ra/μmWork roll
Ra/μmRolling force/
(kN·mm−1)1 0.63 2.45 2.0 2 0.63 2.45 2.5 3 0.67 3.03 2.0 4 0.67 3.03 2.5 5 0.67 3.03 3.0 表 3 模型计算带钢表面粗糙度参数与实验实测值对比
Table 3 Comparison between model calculation parameters of strip surface roughness and experimental values
Working condition Ra/μm Rz/μm Ry/μm Pc/cm−1 M C A R/% M C A R/% M C A R/% M C A R/% 1 1.034 1.093 0.059 5.71 4.244 4.464 0.220 5.18 4.251 4.501 0.250 5.88 68 70 2 2.94 2 1.203 1.255 0.052 4.32 5.973 5.826 0.147 2.46 5.997 5.844 0.153 2.55 70 70 0 0 3 1.155 1.135 0.020 1.73 5.322 5.128 0.194 3.65 5.394 5.202 0.192 3.56 62 60 2 3.23 4 1.262 1.284 0.022 1.74 5.748 5.889 0.141 2.45 5.852 5.922 0.07 1.20 66 60 6 9.09 5 1.451 1.440 0.011 0.76 7.592 7.846 0.254 3.35 7.607 7.861 0.254 3.34 65 60 5 7.69 Note:M—measured value;C—calculated value;A—absolute error;R—relative error. 表 4 带钢表面粗糙度遗传和演变规律计算工况
Table 4 Calculation condition of genetic and evolution rule of strip surface roughness
Working condition Strip Ra/μm Work roll Ra/μm Work roll Ra > Strip Ra 1 3.5 Work roll Ra ≈ Strip Ra 1 1 Work roll Ra < Strip Ra 1 0.5 -
[1] 张清东, 张勃洋, 李瑞, 等. 钢板微观表面质量控制理论与技术研究进展. 机械工程学报, 2016, 52(10):32 doi: 10.3901/JME.2016.10.032 Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip. J Mech Eng, 2016, 52(10): 32 doi: 10.3901/JME.2016.10.032
[2] 张清东, 张勃洋, 李瑞, 等. 镀锡钢板表面光泽度轧制转印控制. 机械工程学报, 2016, 52(14):48 doi: 10.3901/JME.2016.14.048 Zhang Q D, Zhang B Y, Li R, et al. Control of surface glossiness during temper rolling aimed at improving visual aesthetics of tinplate. J Mech Eng, 2016, 52(14): 48 doi: 10.3901/JME.2016.14.048
[3] 徐冬, 李洪波, 张杰, 等. 冷轧平整机毛化辊表面形貌特征多参数对比分析. 中南大学学报(自然科学版), 2014, 45(3):734 Xu D, Li H B, Zhang J, et al. Surface topography multi-parameter analysis of textured rolls in cold temper mill. J Cent South Univ Sci Technol, 2014, 45(3): 734
[4] 王桥医, 朱媛, 过山, 等. 基于轧制界面表面粗糙度特征的板带轧机混合润滑特性研究. 中南大学学报(自然科学版), 2019, 50(1):83 doi: 10.11817/j.issn.1672-7207.2019.01.012 Wang Q Y, Zhu Y, Guo S, et al. Research on mixed lubrication characteristics of strip mill based on surface roughness features of rolling interface. J Cent South Univ Sci Technol, 2019, 50(1): 83 doi: 10.11817/j.issn.1672-7207.2019.01.012
[5] 孙荣生, 王静, 刘英明, 等. 冷连轧机组轧后钢板表面形貌的控制//第十一届中国钢铁年会论文集. 北京, 2017: 1 Sun R S, Wang J, Liu Y M, et al. The control measure of the surface topography on the cold rolling strip//Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 1
[6] 尤媛, 李洪波, 夏春雨, 等. 冷轧毛化工作辊表面粗糙度衰减过程的试验与数学模型研究. 机械工程学报, 2018, 54(12):173 doi: 10.3901/JME.2018.12.173 You Y, Li H B, Xia C Y, et al. Experimental and mathematical model study of attenuation process of the surface roughness of textured work rolls during cold rolling. J Mech Eng, 2018, 54(12): 173 doi: 10.3901/JME.2018.12.173
[7] Li R, Zhang Q D, Zhang X F, et al. Control method for steel strip roughness in two-stand temper mill rolling. Chin J Mech Eng, 2015, 28(3): 573 doi: 10.3901/CJME.2015.0310.027
[8] 张清东, 张勃洋, 马磊, 等. 高强度带钢表面粗糙度轧制转印规律及预测模型. 工程科学学报, 2016, 38(1):118 Zhang Q D, Zhang B Y, Ma L, et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips. Chin J Eng, 2016, 38(1): 118
[9] 白振华, 王骏飞. 冷连轧机成品板面粗糙度控制技术的研究. 钢铁, 2006, 41(11):46 doi: 10.3321/j.issn:0449-749X.2006.11.013 Bai Z H, Wang J F. Control technique for surface roughness of strip in cold tandem rolling. Iron Steel, 2006, 41(11): 46 doi: 10.3321/j.issn:0449-749X.2006.11.013
[10] Plouraboué F, Boehm M. Multiscale roughness transfer in cold metal rolling. Tribol Int, 1999, 32(1): 45 doi: 10.1016/S0301-679X(99)00013-4
[11] Dick K, Lenard J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. J Mater Process Technol, 2005, 168(1): 16 doi: 10.1016/j.jmatprotec.2004.09.091
[12] Jiang Z Y, Tieu A K. Contact mechanism and work roll wear in cold rolling thin strip. Wear, 2007, 263(7-12): 1447 doi: 10.1016/j.wear.2006.12.068
[13] 陈金山, 李长生, 曹勇. 轧辊粗糙度对不锈钢板带表面和工艺参数的影响. 机械工程学报, 2013, 49(4):30 doi: 10.3901/JME.2013.04.030 Chen J S, Li C S, Cao Y. Effects of roll roughness on surface and process parameters for stainless-steel strip. J Mech Eng, 2013, 49(4): 30 doi: 10.3901/JME.2013.04.030
[14] 徐冬, 杨荃, 王晓晨, 等. 冷轧界面油膜厚度对表面形貌转印过程的影响. 哈尔滨工业大学学报, 2017, 49(1):160 doi: 10.11918/j.issn.0367-6234.2017.01.024 Xu D, Yang Q, Wang X C, et al. Influence of lubrication film thickness on transfer of surface topography at cold rolling interface. J Harbin Inst Technol, 2017, 49(1): 160 doi: 10.11918/j.issn.0367-6234.2017.01.024
[15] 高兴昌. 冷轧带钢表面粗糙度的影响因素与复制率研究. 本钢技术, 2013(1):31 Gao X C. Study on control technology of cold rolled strip roughness. Bengang Technol, 2013(1): 31
[16] 张佳康, 周晓敏, 蒋靖. 冷轧带钢表面微观形貌轧制转印规律分析. 金属世界, 2018(3):34 doi: 10.3969/j.issn.1000-6826.2018.03.09 Zhang J K, Zhou X M, Jiang J. Analysis of the rolling transfer fabrication of cold rolled steel strip surface micro-topography. Met World, 2018(3): 34 doi: 10.3969/j.issn.1000-6826.2018.03.09
[17] 井玉安, 臧晓明, 商秋月, 等. 酸洗冷轧过程中轧件表面形貌演变规律研究. 轧钢, 2015, 32(1):31 Jing Y A, Zang X M, Shang Q Y, et al. Evolution of surface morphologies of piece in process of cold rolling. Steel Roll, 2015, 32(1): 31
[18] Shi J Y, McElwain D L S, Domanti S A. Some surface profiles of a strip after plane-strain indentation by rigid bodies with serrated surfaces. J Mater Process Technol, 2002, 124(1-2): 227 doi: 10.1016/S0924-0136(02)00177-2
[19] Wu C H, Zhang L C, Qu P L, et al. A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427: 1246 doi: 10.1016/j.wear.2018.12.020
[20] Giarola A M, Pereira P H R, Stemler P A, et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. J Mater Process Technol, 2015, 216: 234 doi: 10.1016/j.jmatprotec.2014.09.015
[21] 张晓峰, 李瑞, 张勃洋, 等. 平整轧制过程中带钢表面形貌的生成模型. 机械工程学报, 2013, 49(14):38 doi: 10.3901/JME.2013.14.038 Zhang X F, Li R, Zhang B Y, et al. Model for the generation of surface topography in steel strip temper rolling. J Mech Eng, 2013, 49(14): 38 doi: 10.3901/JME.2013.14.038
[22] Mishra M, Egberts P, Bennewitz R, et al. Friction model for single-asperity elastic-plastic contacts. Phys Rev B, 2012, 86(4): 045452 doi: 10.1103/PhysRevB.86.045452
[23] Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303(1-2): 1 doi: 10.1016/j.wear.2013.02.024
[24] Mulvihill D M, Kartal M E, Nowell D, et al. An elastic–plastic asperity interaction model for sliding friction. Tribol Int, 2011, 44(12): 1679 doi: 10.1016/j.triboint.2011.06.018
[25] Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metal forming processes. J Mater Process Technol, 2004, 145(3): 391 doi: 10.1016/j.jmatprotec.2003.09.007
[26] 徐冬, 张杰, 李洪波, 等. 冷轧带钢表面粗糙度影响因素及控制策略. 中南大学学报(自然科学版), 2017, 48(1):112 doi: 10.11817/j.issn.1672-7207.2017.01.016 Xu D, Zhang J, Li H B, et al. Influence factors and control strategy of cold rolled strip surface roughness. J Cent South Univ Sci Technol, 2017, 48(1): 112 doi: 10.11817/j.issn.1672-7207.2017.01.016