降雨和地震条件下浅层黄土滑坡三维稳定性评价

李泊良, 张帆宇

李泊良, 张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报, 2022, 44(3): 440-450. DOI: 10.13374/j.issn2095-9389.2020.10.08.002
引用本文: 李泊良, 张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报, 2022, 44(3): 440-450. DOI: 10.13374/j.issn2095-9389.2020.10.08.002
LI Bo-liang, ZHANG Fan-yu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440-450. DOI: 10.13374/j.issn2095-9389.2020.10.08.002
Citation: LI Bo-liang, ZHANG Fan-yu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440-450. DOI: 10.13374/j.issn2095-9389.2020.10.08.002

降雨和地震条件下浅层黄土滑坡三维稳定性评价

基金项目: 国家自然科学基金资助项目(42090053,41977212);兰州大学中央高校基本科研业务费专项资金资助项目(lzujbky-2021-ct04)
详细信息
    通信作者:

    张帆宇: E-mail: Zhangfy@lzu.edu.cn

  • 分类号: P642.22

Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions

More Information
  • 摘要: 以兰州市大沙沟流域浅层黄土滑坡为研究对象,整合降雨渗透模型到黄土斜坡三维确定性模型,评价不同降雨和地震耦合效应下浅层黄土滑坡稳定性,并用混淆矩阵法和受试者工作特征曲线法(ROC)评价稳定性评价预测的结果。研究结果发现,耦合降雨入渗和地震的三维确定性模型,对流域尺度浅层黄土滑坡稳定性评价具有较好效果,能作为降雨和地震诱发黄土滑坡灾害评价和早期预警的工具,对加强不同尺度极端事件下黄土滑坡灾害时空灾害评价和预测具有重要参考价值。
    Abstract: Loess is widely distributed in the Northwest Plateau of China. One-third of the landslides in China occur in the loess area. Shallow loess landslides are especially widespread and frequent geological disasters, causing serious casualties and huge property damage. Under rainfall and loading, loess is prone to structural collapse and strength reduction. Therefore, shallow loess landslides distribute widely and occur frequently. Usually, rainfall and earthquakes are the frequent and active triggers for loess landslides. In recent years, a large number of loess landslides have been induced by the coupling of rainfall and earthquakes on the Loess Plateau. Although the coupling effect of earthquake and rainfall will seriously aggravate the instability probability and disaster risk of shallow loess landslides, there is still a lack of quantitative disaster evaluation research on such landslide events. This study chose the shallow loess landslide as the research object in the Dashagou catchment of Lanzhou city. The rainfall penetration model was integrated into a three-dimensional deterministic model of the loess slope, and the stability of the shallow loess landslide was evaluated in the study area with different rainfall and seismic coupling effects. The confusion matrix and the receiver operating characteristic (ROC) curve were used to evaluate the results of the stability evaluation prediction. Results of this study reveal that the integration of a three-dimensional deterministic model of rainfall infiltration and earthquake effects has a good impact on the stability evaluation of shallow loess landslides at the watershed scale. Moreover, this model can be used as a tool for the assessment and early warning of rainfall and earthquake-induced loess landslides. The employment of the three-dimensional deterministic model considering a complicated slope and rainfall situation has great significance in the acquisition of results that are more accordant with the actual situation. It is of great reference value to strengthen the spatiotemporal disaster assessment and prediction of loess landslide disasters under different scales of extreme events.
  • 图  1   Scoops3D检索原理图

    Figure  1.   Retrieval principle of Scoops3D

    图  2   单元栅格示意图

    Figure  2.   Schematic diagram of cell grid

    图  3   参数敏感性分析结果

    Figure  3.   Sensitivity analysis results of parameter

    图  4   研究区的数字高程模型和滑坡分布图

    Figure  4.   Study area digital elevation model and landslide distribution map

    图  5   土水特征曲线图

    Figure  5.   Soil water characteristic curve

    图  6   降雨作用下稳定性评价图。(a)无雨状态;(b)中雨状态;(c)暴雨状态

    Figure  6.   Stability evaluation under rainfall: (a) no rain; (b) moderate rain; (c) heavy rain

    图  7   地震作用下稳定性评价图。(a)Keq=0.05;(b)Keq=0.10;(c)Keq=0.20

    Figure  7.   Stability evaluation under earthquake: (a) Keq=0.05; (b) Keq=0.10; (c) Keq=0.20

    图  8   降雨地震作用下稳定性评价图。(a)中雨+0.05;(b)中雨+0.10;(c)中雨+0.20;(d)暴雨+0.05;(e)暴雨+0.10;(f)暴雨+0.20

    Figure  8.   Stability evaluation under rainfall and earthquake: (a) moderate rain +0.05; (b) moderate rain +0.10; (c) moderate rain+0.20; (d) heavy rain +0.05; (e) heavy rain +0.10; (f) heavy rain +0.20

    图  9   失稳斜坡体积统计图(a)和稳定性分级面积堆积图(b)(图中N指无雨,M指中雨,H指大雨,如M0.05指中雨和0.05地震加速度系数耦合情况)

    Figure  9.   Volume statistics of unstable slopes (a) and stacking diagrams of the graded area of stability (b) (N refers to no rain, M refers to moderate rain, and H refers to heavy rain. For example, M0.05 refers to the coupling of moderate rain and 0.05 earthquake acceleration coefficient)

    图  10   混淆矩阵结果

    Figure  10.   Confusion matrix result

    图  11   ROC曲线评价结果。(a)降雨情况;(b)地震情况;(c)耦合情况(图中N指无雨,M指中雨,H指大雨。如M0.05指中雨和0.05地震加速度系数耦合情况)

    Figure  11.   ROC curve evaluation results: (a) rainfall; (b) earthquake; (c) coupling (N refers to no rain, M refers to moderate rain, and H refers to heavy rain, M0.05 refers to the coupling of moderate rain and 0.05 earthquake acceleration coefficient)

    表  1   敏感性分析参数变化范围

    Table  1   Variation range of sensitivity analysis parameters

    ItemR /mC/kPaA/m2W/Nϕ /(°)Kequ/kPa
    Range3–1510–5010–2.0×104100–2.0×10610–300–0.2−50–100
    Standard9301.0×1041.1×106200.125
    下载: 导出CSV

    表  2   土参数取值表

    Table  2   Soil parameter value table

    C /
    kPa
    γ /
    (kN·m−3)
    ϕ/
    (°)
    Permeability coefficient,
    k /(m·s−1)
    Hydraulic diffusivity,
    hd /(m3·s−1)
    3015292.4×10−62.4×10−4
    下载: 导出CSV
  • [1]

    Zhang F Y, Chen W W, Liu G, et al. Relationships between landslide types and topographic attributes in a loess catchment, China. J Mt Sci, 2012, 9(6): 742 doi: 10.1007/s11629-012-2377-7

    [2] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡. 岩石力学与工程学报, 2007, 26(7):1297 doi: 10.3321/j.issn:1000-6915.2007.07.001

    Xu Z J, Lin Z G, Zhang M S. Loess in China and loess landslides. Chin J Rock Mech Eng, 2007, 26(7): 1297 doi: 10.3321/j.issn:1000-6915.2007.07.001

    [3] 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究. 工程地质学报, 2011, 19(4):530 doi: 10.3969/j.issn.1004-9665.2011.04.014

    Zhang M S, Li T L. Triggering factors and forming mechanism of loess landslides. J Eng Geol, 2011, 19(4): 530 doi: 10.3969/j.issn.1004-9665.2011.04.014

    [4]

    Lyu H M, Shen J, Arulrajah A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China. Sustainability, 2018, 10(2): 304 doi: 10.3390/su10020304

    [5] 吴玮江. 天水市滑坡泥石流灾害. 水文地质工程地质, 2003, 30(5):75 doi: 10.3969/j.issn.1000-3665.2003.05.017

    Wu W J. Landslide and debris flow hazards in City of Tianshui. Hydrogeol Eng Geol, 2003, 30(5): 75 doi: 10.3969/j.issn.1000-3665.2003.05.017

    [6] 辛鹏, 吴树仁, 石菊松, 等. 基于降雨响应的黄土丘陵区滑坡危险性预测研究— —以宝鸡市麟游县为例. 地球学报, 2012, 33(3):349

    Xin P, Wu S R, Shi J S, et al. A predictive study of the hazardousness of landslides in loess hilly region based on rainfall response: A case study of Linyou County, Baoji city. Acta Geosci Sin, 2012, 33(3): 349

    [7]

    Xu Y R, Allen M B, Zhang W H, et al. Landslide characteristics in the loess plateau, northern China. Geomorphology, 2020, 359: 107150 doi: 10.1016/j.geomorph.2020.107150

    [8]

    Sun P, Li R J, Jiang H, et al. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province, northwest China. Bull Eng Geol Environ, 2017, 76(4): 1281 doi: 10.1007/s10064-016-0949-4

    [9]

    Zhang D X, Wang G H. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Eng Geol, 2007, 94(1-2): 76 doi: 10.1016/j.enggeo.2007.07.007

    [10] 齐吉琳, 赵国武, 张振中, 等. 甘肃永登5.8级地震黄土震害特征及机理分析. 西北地震学报, 1998, 20(1):70

    Qi J L, Zhao G W, Zhang Z Z, et al. Analysis on characteristics and mechanism of the seismic damage in loess in Yongdeng m s5.8 earthquake region, Gansu province. Northwest Seismol J, 1998, 20(1): 70

    [11] 徐舜华, 吴志坚, 孙军杰, 等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制. 地震工程学报, 2013, 35(3):471

    Xu S H, Wu Z J, Sun J J, et al. Study of the characteristics and inducing mechanism of typical earthquake landslidesof the Minxian-Zhangxian MS6.6 earthquake. China Earthq Eng J, 2013, 35(3): 471

    [12] 沈玲玲, 刘连友, 许冲, 等. 基于多模型的滑坡易发性评价——以甘肃岷县地震滑坡为例. 工程地质学报, 2016, 24(1):19

    Shen L L, Liu L Y, Xu C, et al. Multi-models based landslide susceptibility evaluation—illustrated with landslides triggered by Minxian earthquake. J Eng Geol, 2016, 24(1): 19

    [13] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估. 岩土工程学报, 2020, 42(1):1

    Wang L M. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes. Chin J Geotech Eng, 2020, 42(1): 1

    [14]

    Wang G L, Li T L, Xing X L, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan'an, NW China. Environ Earth Sci, 2015, 73(12): 7933 doi: 10.1007/s12665-014-3951-9

    [15]

    Lin C W, Liu S H, Lee S Y, et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng Geol, 2006, 86(2-3): 87 doi: 10.1016/j.enggeo.2006.02.010

    [16]

    Wang H B, Sassa K, Xu W Y. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan. Nat Hazards, 2006, 41(1): 43

    [17]

    Saha A K, Gupta R P, Sarkar I, et al. An approach for GIS-based statistical landslide susceptibility zonation: With a case study in the Himalayas. Landslides, 2005, 2(1): 61 doi: 10.1007/s10346-004-0039-8

    [18]

    Saha A K, Gupta R P, Arora M K. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sens, 2002, 23(2): 357 doi: 10.1080/01431160010014260

    [19] 张帆宇, 刘高, 谌文武, 等. 基于多变量统计分析的大型滑坡敏感性评价: 以汶川地震影响的陇南地区为例. 中南大学学报(自然科学版), 2012, 43(9):3595

    Zhang F Y, Liu G, Chen W W, et al. Large landslide susceptibility assessment by multivariate statistical analysis in the Longnan area affected by the Wenchuan earthquake. J Central South Univ Sci Technol, 2012, 43(9): 3595

    [20]

    Baum R L, Savage W Z, Godt J W. TRIGRS—A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis[R/OL]. US Geological Survey Open-File Report. (2002-02-15) [2021-5-1].https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.593.6092&rep=rep1&type=pdf

    [21]

    Dietrich W E, Bellugi D, De Asua R R. Validation of the shallow landslide model, SHALSTAB, for forest management. Water science and Application, 2001, 2: 195

    [22]

    Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding. Water Resour Res, 1994, 30(4): 1153 doi: 10.1029/93WR02979

    [23]

    Xie M W, Esaki T, Qiu C, et al. Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Comput Geotech, 2006, 33(4-5): 260 doi: 10.1016/j.compgeo.2006.07.003

    [24]

    Bromhead E N, Ibsen M L, Papanastassiou X, et al. Three-dimensional stability analysis of a coastal landslide at Hanover Point, Isle of Wight. Q J Eng Geol Hydrogeol, 2002, 35(1): 79 doi: 10.1144/qjegh.35.1.79

    [25]

    Xie M W, Esaki T, Zhou G Y. GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Nat Hazards, 2004, 33(2): 265 doi: 10.1023/B:NHAZ.0000037036.01850.0d

    [26]

    Reid M, Christian S, Brien D, et al. Scoops3D-software to Analyze Three-dimensional Slope Stability throughout a Digital Landscape. Reston: US Geological Survey Press, 2015

    [27]

    Reid M E, Sisson T W, Brien D L. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology, 2001, 29(9): 779 doi: 10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2

    [28]

    Tran T V, Alvioli M, Lee G, et al. Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: A case study. Landslides, 2018, 15(6): 1071 doi: 10.1007/s10346-017-0931-7

    [29]

    Alvioli M, Baum R L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Model Softw, 2016, 81: 122 doi: 10.1016/j.envsoft.2016.04.002

    [30]

    Luna B Q, Remaître A, van Asch T W J, et al. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol, 2012, 128: 63 doi: 10.1016/j.enggeo.2011.04.007

    [31] 王恭先, 徐峻岭, 刘光代, 等. 滑坡学与滑坡防治技术. 北京: 中国铁道出版社, 2004

    Wang G X, Xu J L, Liu G D, et al. Landslide Science and Landslide Control Technology. Beijing: China Railway Publishing House, 2004

    [32] 柳煜, 田文通, 苏鹤军, 等. 黄河阶地特征与地震动参数的相关性研究. 地震工程学报, 2019, 41(5):1234 doi: 10.3969/j.issn.1000-0844.2019.05.1234

    Liu Y, Tian W T, Su H J, et al. Correlation between characteristics of Yellow River terraces and seismic ground motion parameters. China Earthq Eng J, 2019, 41(5): 1234 doi: 10.3969/j.issn.1000-0844.2019.05.1234

    [33]

    Wen B P, Yan Y J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng Geol, 2014, 168: 46 doi: 10.1016/j.enggeo.2013.10.023

    [34]

    Fredlund D G, Xing A. Equations for the soi‒water characteristic curve. Can Geotechnical J, 1994, 31(4): 521 doi: 10.1139/t94-061

    [35] 辛星, 张帆宇. 三维确定性模型在浅层黄土滑坡稳定性预测中的应用. 工程科学学报, 2018, 40(4):397

    Xin X, Zhang F Y. Application of a 3D deterministic model for predicting shallow loess landslide stability. Chin J Eng, 2018, 40(4): 397

    [36] 崔博, 王光进, 刘文连, 等. 强降雨条件下孔隙气压作用的高台阶排土场渗流与稳定性. 工程科学学报, 2021, 43(3):365

    Cui B, Wang G J, Liu W L, et al. Seepage and stability analysis of pore air pressure on a high-bench dump under heavy rainfall. Chin J Eng, 2021, 43(3): 365

    [37]

    Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett, 2006, 27(8): 861 doi: 10.1016/j.patrec.2005.10.010

图(11)  /  表(2)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  486
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 网络出版日期:  2021-02-07
  • 发布日期:  2022-01-07

目录

    /

    返回文章
    返回