基于协调变量的多机协同打击制导方法与试验验证

Coordinated variable-based guidance method and experimental verification for multi-UAVs

  • 摘要: 根据多无人机协同打击的作战特点和要求,提出了一种通用性集群时空协同打击制导控制方案。该方案分析了比例导引律(Proportional navigation law, PN)在满足特定协调变量一致时具有下弹道唯一的特性,以此为基础,通过选取协调变量,将制导段分为协调段和末制导段。协调段的航迹控制采用改进Dubins方法,实现了协调变量的时空同步收敛;末制导段将三维空间制导解耦为纵向平面与侧向平面的制导,基于同系数比例导引实现集群攻击时间一致。分段航迹控制实现了集群在考虑目标防御射界约束下的时空协同。数值仿真和实际飞行试验结果表明,该方案具有实时的在线规划能力,能够实现大规模集群时空协同下的全向饱和攻击,打击时间精度和空间精度较高。

     

    Abstract: With the gradual establishment of regional cooperative air defense systems by the world’s military powers, the success rate of a single-aircraft penetration operation is greatly reduced, and the concept of many-to-one cooperative operation has been widely valued. As a new type of lethal aerial weapon, suicide unmanned aerial vehicles (UAVs) have played an important role in many local wars recently. Compared with traditional missiles, suicide UAVs can hover in a combat area for a long time, waiting for potential targets. Moreover, a suicide UAV cannot be easily detected via an early warning system and can approach targets covertly. Further, the manufacturing cost of a suicide UAV is low, and it can form a large-scale swarm for a surprise attack. Therefore, in the foreseeable future, a multi-UAV cooperative attack is likely to subvert existing combat styles. According to the operational characteristics and requirements of multi-UAV cooperative attacks, a general guidance scheme for the cooperative attack of multi-UAVs is proposed. Based on the theory that proportional navigation law has trajectory uniqueness under specific variable constraints, the guidance phase is divided into coordination and terminal phases by selecting coordinated variables. The improved Dubins method is used in the track control of the coordination phase to realize the space–time synchronous convergence of coordination variables. The 3D space guidance is decoupled into longitudinal- and lateral-plane guidance in the terminal phase, and the impact time of the swarm is consistent based on the proportional guidance with the same coefficient. A track segment control realizes the space–time cooperation of the swarm considering the target defense range constraint. Numerical simulation and actual flight test results show that the scheme has real-time online planning ability, can realize an omnidirectional saturation attack under the space–time cooperation of a large-scale UAV swarm, and has high impact time and space precision.

     

/

返回文章
返回