考虑端部摩擦的中心直裂纹巴西圆盘断裂参数解析解

Analytical solutions of fracture parameters for a centrally cracked Brazilian disk considering the loading friction

  • 摘要: 运用权函数法推导出考虑加载端摩擦的四种形式分布载荷加载下,中心直裂纹巴西圆盘试样在任意I/II复合型断裂模式下I、II型应力强度因子及T应力的解析解,并探究了端部摩擦及载荷分布角度对断裂参数的影响。研究结果表明:(1)当中心裂纹相对长度β较小时,纯I型、纯II型断裂的YIYIIT*(分别是量纲为一的I型、II型应力强度因子及T应力)均随摩擦系数及载荷分布角度增大而减小;但是,当β较大时,摩擦系数增大可使纯I型YI增大,而载荷分布角度增大可使纯II型T*增大。(2)接触载荷分布形式为常数函数时,载荷分布角度对断裂参数的影响最显著,而四次函数下其对断裂参数的影响相对最小。(3)当β较小时,纯II型加载角度随载荷分布角度增大而减小;当β较大时,其随载荷分布角度增大而增大;摩擦系数增大可使纯II型加载角度增大。

     

    Abstract: A centrally cracked Brazilian disk (CCBD) specimen subjected to a pair of diametral compressive forces has been widely used to study mixed-mode I and II fractures of brittle and quasi-brittle materials. Reasons for using the CCBD are mainly due to its capability to introduce different mode mixities from pure mode I to pure mode II, the existence of closed-form solutions for fracture parameters, and the simple setup of compressive test. In addition to the diametrical concentrated force loading, the partially distributed pressure loading is also an important loading condition for CCBD specimen tests. Using the weight function method, analytical solutions of stress intensity factors and T stress considering the tangential loading friction for a CCBD specimen that is subjected to four typical partially distributed loads were derived, and effects of the boundary friction and load distribution angle on the fracture parameters were also explored. The results obtained are as follows: (1) For short cracks, geometric parameters YI, YII, and T* of pure mode I and II fractures decrease with an increase in the friction coefficient and load distribution angle. However, for long cracks, an increase in the friction coefficient causes an increase in pure mode-I YI, and an increase in the load distribution angle causes an increase in pure mode-II T*; (2) The influence of the load distribution angle on the fracture parameters is the most significant when the distributed pressure follows a constant function form, while it is the least significant for the case of quartic polynomial pressure; (3) The critical loading angle for pure mode II fractures decreases with an increase in the load distribution angle for short cracks, whereas it increases for long cracks. When the load distribution angle is fixed, an increase in friction can raise the critical loading angle for pure mode II fractures. These results have further improved the research of fracture parameters in CCBD specimens.

     

/

返回文章
返回