冲击荷载下含层理介质动态裂纹扩展特性研究

王雁冰, 付代睿, 吴后为, 耿延杰, 张瑶瑶

王雁冰, 付代睿, 吴后为, 耿延杰, 张瑶瑶. 冲击荷载下含层理介质动态裂纹扩展特性研究[J]. 工程科学学报, 2023, 45(5): 701-713. DOI: 10.13374/j.issn2095-9389.2022.03.20.001
引用本文: 王雁冰, 付代睿, 吴后为, 耿延杰, 张瑶瑶. 冲击荷载下含层理介质动态裂纹扩展特性研究[J]. 工程科学学报, 2023, 45(5): 701-713. DOI: 10.13374/j.issn2095-9389.2022.03.20.001
WANG Yan-bing, FU Dai-rui, WU Hou-wei, GENG Yan-jie, ZHANG Yao-yao. Dynamic crack propagation characteristics of media with bedding under an impact load[J]. Chinese Journal of Engineering, 2023, 45(5): 701-713. DOI: 10.13374/j.issn2095-9389.2022.03.20.001
Citation: WANG Yan-bing, FU Dai-rui, WU Hou-wei, GENG Yan-jie, ZHANG Yao-yao. Dynamic crack propagation characteristics of media with bedding under an impact load[J]. Chinese Journal of Engineering, 2023, 45(5): 701-713. DOI: 10.13374/j.issn2095-9389.2022.03.20.001

冲击荷载下含层理介质动态裂纹扩展特性研究

基金项目: 国家重点研发计划资助项目(2021YFC2902103);国家自然科学基金重点资助项目(51934001);中国矿业大学(北京)越崎青年学者资助项目(800015Z11A24)
详细信息
    通信作者:

    王雁冰: E-mail: wangyanbing@cumtb.edu.cn

  • 分类号: O346.1

Dynamic crack propagation characteristics of media with bedding under an impact load

More Information
  • 摘要: 利用数字激光动态焦散线实验系统(DLDC),对含不同层理角度(30°,45°和60°)的3组有机玻璃板(Polymethyl methacrylate, PMMA)试件进行三点弯落锤冲击试验,借助高速相机记录了试件的断裂过程和裂纹尖端的动态焦散斑形状变化过程,得到了其Ⅰ、Ⅱ型动态应力强度因子的变化特征,并分析了其裂纹尖端位移及速度曲线。结合离散格子弹簧模型(DLSM),对比分析了试件的断裂形态,得到了裂纹尖端的应力场和运动场的变化规律,研究了应力波在层理处的透射和反射特征,最后利用DLSM分析了层理参数对介质断裂特性的影响。结果表明,试件的断裂特征,裂纹的起裂时间等都随层理角度的变化而不同,裂纹在不同角度层理内扩展速度不同;试件的断裂表现出拉剪复合特征;裂纹在抵达层理前速度在某一数值上下波动;层理的弹性模量和厚度都会对试件的动态断裂特性产生影响。
    Abstract: With the gradual development of mines, tunnels, and other underground constructions, theoretical research on the influence of internal defects in rock structure on rock dynamic fracture behavior and related engineering practices are of great importance. In this paper, a digital laser dynamic caustics experimental system is used to conduct three-point bending drop hammer impact tests on three groups of polymethyl methacrylate specimens with different angles of bedding (30°, 45°, and 60°). The fracture process of the specimens and the shape change process of the dynamic caustic speckle at the crack tip were recorded using a high-speed camera. The characteristics of dynamic stress intensity factors Ⅰ and Ⅱ were obtained, and the crack tip displacement and velocity curves were analyzed. Combined with the discrete lattice spring model (DLSM), the fracture morphology of the specimens was analyzed, and the variation law of the stress field and field at the crack tip was obtained. The transmission and reflection characteristics of stress waves were studied at stratification. Finally, the impact of the fracture characteristic stratification parameters of the medium was analyzed using DLSM. The results show that the fracture characteristics of the specimens, the initiation time of the crack, and the propagation speed of the crack in the bedding plane vary with the bedding angle. With increasing bedding angle, the initiation time of the crack advances, the propagation speed of the crack increases along the weak bedding plane after extending to the bedding plane, and the crack is more inclined to extend along the weak bedding plane to complete specimen fracture. With the crack expansion, the type Ⅱ stress intensity factor appears, and the specimen fracture shows the characteristics of tension–shear composite failure. Before arriving at a particular bedding speed, cracks fluctuate up and down, and attenuation in the aftermath of the bedding generally has lower volatility change; the elastic modulus and bedding thickness affect the dynamic fracture characteristics of the specimens. If the bedding elastic modulus is less than 0.1 GPa, the crack extension in the bedding plane distance increases with the elastic modulus. If it is more than 0.1 GPa, when the bedding for the organic glass bonding effect increases, the crack goes directly through the bedding. The propagation distance of cracks along the weak plane of the bedding increases with the bedding thickness.
  • 图  1   数字激光动态焦散线实验系统

    Figure  1.   Digital laser dynamic caustics test system

    图  2   试件示意图.(a)试件A;(b)试件B;(c)试件C

    Figure  2.   Diagram of a specimen: (a) specimen A; (b) specimen B; (c) specimen C

    图  3   冲击加载装置示意图

    Figure  3.   Diagram of the impact loading device

    图  4   模型建立及加载示意图(层理角度30°)

    Figure  4.   Diagram of model establishment and loading (bedding angle, 30°)

    图  5   3组试件的破坏形态及数值计算结果.(a)试件A;(b)试件B;(c)试件C

    Figure  5.   Failure form and numerical results of the three groups of specimens: (a) specimen A; (b) specimen B; (c) specimen C

    图  6   3组试件裂纹扩展的动态焦散斑图片.(a)试件A;(b)试件B;(c)试件C

    Figure  6.   Dynamic caustics spot image of crack propagation in three groups of specimens: (a) specimen A; (b) specimen B; (c) specimen C

    图  7   动态应力强度因子随时间的变化曲线.(a)试件A;(b)试件B;(c)试件C

    Figure  7.   Variation curve of the dynamic stress intensity factor vs time: (a) specimen A; (b) specimen B; (c) specimen C

    图  8   应力波在试件A模型中传递的应力云图

    Figure  8.   Stress cloud map transmitted by stress waves in the specimen A model

    图  9   应力波在预制层理处的传播云图.(a)试件B;(b)试件C

    Figure  9.   Propagation of stress waves at precast beddings: (a) specimen B; (b) specimen C

    图  10   参考点My方向应力的变化曲线

    Figure  10.   Variation curve of y-direction stress at reference point M

    图  11   裂纹扩展速度随时间的变化曲线.(a)试件A;(b)试件B;(c)试件C

    Figure  11.   Variation curve of crack propagation velocity with time: (a) specimen A; (b) specimen B; (c) specimen C

    图  12   不同层理弹性模量条件下模型的开裂结果.(a)E=0.01 GPa;(b)E=0.04 GPa;(c)E=0.1 GPa;(d)E=0.13 GPa

    Figure  12.   Cracking results of the model under different elastic moduli of beds: (a)E=0.01 GPa;(b)E=0.04 GPa;(c)E=0.1 GPa;(d)E=0.13 GPa

    图  13   不同层理弹性模量条件下的裂纹扩展位移(a)和速度对比曲线(b)

    Figure  13.   Contrast curves of crack propagation displacement (a) and velocity under different elastic moduli of bedding (b)

    图  14   不同层理厚度条件下模型的开裂结果.(a)d=0.3 mm;(b)d=0.4 mm;(c)d=0.6 mm;(d)d=0.7 mm

    Figure  14.   Cracking results of the model under different bedding thicknesses: (a) d=0.3 mm; (b) d=0.4 mm; (c) d=0.6 mm; (d) d=0.7 mm

    图  15   不同层理厚度条件下裂纹扩展的位移(a)和速度对比(b)曲线

    Figure  15.   Displacement (a) and velocity contrast (b) curves of crack propagation under different bedding thicknesses

  • [1] 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究. 采矿与安全工程学报, 2021, 38(5):1025

    Li D Y, Wan Q R, Zhu Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods. J Min &Saf Eng, 2021, 38(5): 1025

    [2] 王奇智, 夏开文, 吴帮标, 等. 预制平行双节理类岩石材料板动态破坏试验研究. 天津大学学报(自然科学与工程技术版), 2019, 52(10):1099

    Wang Q Z, Xia K W, Wu B B, et al. Dynamic failure of simulated rock mass plate containing two parallel cracks. J Tianjin Univ (Sci Technol), 2019, 52(10): 1099

    [3] 刘晓辉, 戴峰, 刘建锋, 等. 考虑层理方向煤岩的静动巴西劈裂试验研究. 岩石力学与工程学报, 2015, 34(10):2098 doi: 10.13722/j.cnki.jrme.2015.0608

    Liu X H, Dai F, Liu J F, et al. Brazilian splitting tests on coal rock considering bedding direction under static and dynamic loading rate. Chin J Rock Mech Eng, 2015, 34(10): 2098 doi: 10.13722/j.cnki.jrme.2015.0608

    [4] 李超, 刘红岩, 阎锡东. 动载下节理岩体破坏过程的数值试验研究. 岩土力学, 2015, 36(Suppl 2):655 doi: 10.16285/j.rsm.2015.S2.093

    Li C, Liu H Y, Yan X D. Numerical experiment of failure process of jointed rock mass under dynamic loading. Rock Soil Mech, 2015, 36(Suppl 2): 655 doi: 10.16285/j.rsm.2015.S2.093

    [5]

    Wu Y K, Hao H, Zhou Y X, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dyn Earthq Eng, 1998, 17(6): 407 doi: 10.1016/S0267-7261(98)00030-X

    [6] 廖志毅, 梁正召, 杨岳峰, 等. 刀具动态作用下节理岩体破坏过程的数值模拟. 岩土工程学报, 2013, 35(6):1147

    Liao Z Y, Liang Z Z, Yang Y F, et al. Numerical simulation of fragmentation process of jointed rock mass induced by a drill bit under dynamic loading. Chin J Geotech Eng, 2013, 35(6): 1147

    [7]

    Cai J G, Zhao J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int J Rock Mech Min Sci, 2000, 37(4): 661 doi: 10.1016/S1365-1609(00)00013-7

    [8] 李夕兵, 王卫华, 马春德. 不同频率载荷作用下的岩石节理本构模型. 岩石力学与工程学报, 2007, 26(2):247 doi: 10.3321/j.issn:1000-6915.2007.02.004

    Li X B, Wang W H, Ma C D. Constitutive model of rock joints under compression loads with different frequencies. Chin J Rock Mech Eng, 2007, 26(2): 247 doi: 10.3321/j.issn:1000-6915.2007.02.004

    [9]

    Li J C, Ma G W. Experimental study of stress wave propagation across a filled rock joint. Int J Rock Mech Min Sci, 2009, 46(3): 471 doi: 10.1016/j.ijrmms.2008.11.006

    [10]

    Wang Y B, Yang R S. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test. Eng Fract Mech, 2017, 184: 319 doi: 10.1016/j.engfracmech.2017.09.006

    [11] 李淼, 乔兰, 李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析. 岩土工程学报, 2017, 39(7):1336 doi: 10.11779/CJGE201707021

    Li M, Qiao L, Li Q W. Energy dissipation of rock specimens under high strain rate with single joint in SHPB tensile tests. Chin J Geotech Eng, 2017, 39(7): 1336 doi: 10.11779/CJGE201707021

    [12] 李娜娜, 李建春, 李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究. 岩石力学与工程学报, 2015, 34(10):1994 doi: 10.13722/j.cnki.jrme.2015.0419

    Li N N, Li J C, Li H B, et al. Shpb experiment on influence of contact area of joints on propagation of stress wave. Chin J Rock Mech Eng, 2015, 34(10): 1994 doi: 10.13722/j.cnki.jrme.2015.0419

    [13] 杨立云, 张勇进, 孙金超, 等. 偏置裂纹对含双裂纹PMMA试件动态断裂影响效应研究. 矿业科学学报, 2017, 2(4):330

    Yang L Y, Zhang Y J, Sun J C, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks. J Min Sci Technol, 2017, 2(4): 330

    [14]

    Siegmund T, Fleck N A, Needleman A. Dynamic crack growth across an interface. Int J Fract, 1997, 85(4): 381 doi: 10.1023/A:1007460509387

    [15]

    Sundaram B M, Tippur H V. Dynamics of crack penetration vs branching at a weak interface: An experimental study. J Mech Phys Solids, 2016, 96: 312 doi: 10.1016/j.jmps.2016.07.020

    [16] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究. 岩石力学与工程学报, 2017, 36(12):2872

    Li D Y, Han Z Y, Sun X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chin J Rock Mech Eng, 2017, 36(12): 2872

    [17] 韩震宇, 李地元, 朱泉企, 等. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性. 工程科学学报, 2020, 42(12):1588

    Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588

    [18] 杨阳, 杨仁树. 高应变率下红砂岩“冻伤效应”. 工程科学学报, 2019, 41(10):1249

    Yang Y, Yang R S. “Frostbite effect”of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249

    [19]

    Wang Y. Development and application of the new explosive loading experimental system of digital laser dynamic caustics. J Test Eval, 2017, 46(2): 20160244 doi: 10.1520/JTE20160244

    [20]

    Yang R S, Xu P, Yue Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method. Eng Fract Mech, 2016, 161: 63 doi: 10.1016/j.engfracmech.2016.04.042

    [21] 杨仁树, 王雁冰, 侯丽冬, 等. 冲击荷载下缺陷介质裂纹扩展的DLDC试验. 岩石力学与工程学报, 2014, 33(10):1971

    Yang R S, Wang Y B, Hou L D, et al. Dldc experiment on crack propagation in defective medium under impact loading. Chin J Rock Mech Eng, 2014, 33(10): 1971

    [22]

    Zhao G F. Development of Micro-macro Continuum-discontinuum Coupled Numerical Method [Dissertation]. Lausanne: École Polytechnique Fédérale de Lausanne, 2010

    [23]

    Zhao G F, Fang J N, Zhao J. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Methods Geomech, 2011, 35(8): 859 doi: 10.1002/nag.930

    [24]

    Zhao Y X, Zhao G F, Jiang Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int J Coal Geol, 2014, 132: 81 doi: 10.1016/j.coal.2014.08.007

    [25]

    Wang Y B, Yang R S, Zhao G F. Influence of empty hole on crack running in PMMA plate under dynamic loading. Polym Test, 2017, 58: 70 doi: 10.1016/j.polymertesting.2016.11.020

  • 期刊类型引用(7)

    1. 赵鸿波,王凤民,张福,迟臣焕,周振兴,张建良. 2600 m~3高炉炉缸侵蚀特征数值模拟. 中国冶金. 2023(06): 87-94 . 百度学术
    2. 吕昌贺,常李,周海华,徐震,张建良. 沙钢3号高炉石墨碳护炉方式下的稳产措施. 炼铁. 2023(02): 5-8 . 百度学术
    3. 陈立军,曲迎霞,孙国伟. 铁钢界面铁水温降碳析出利用研究. 宝钢技术. 2021(04): 14-18 . 百度学术
    4. 谢仁金. 泉州闽光高炉铁水粘度影响因素的分析. 天津冶金. 2020(06): 14-18+21 . 百度学术
    5. 焦克新,张建良,刘征建,王广伟. 高炉炉缸含钛保护层物相及TiC_(0.3)N_(0.7)形成机理. 工程科学学报. 2019(02): 190-198 . 本站查看
    6. 刘增强,张建良,焦克新,周云花,但家云. 高炉炉缸Ti(C, N)保护层及死料柱行为研究. 炼铁. 2019(03): 22-25 . 百度学术
    7. 祝和利,马恒保,张建良,李昕,赵永安. 碳复合砖炉缸无“象脚状”侵蚀现象探究. 炼铁. 2019(05): 1-5 . 百度学术

    其他类型引用(3)

图(15)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  313
  • PDF下载量:  148
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-03-19
  • 网络出版日期:  2022-05-04
  • 发布日期:  2023-04-30

目录

    /

    返回文章
    返回