矿山地热防控与利用研究进展

Research progress on the prevention and utilization of mine geothermal energy

  • 摘要: 从矿山地热致灾形式、热害控制技术、热能利用方法3个方面,对相关文献进行归纳,总结已有研究成果。结果表明,矿山地热的致灾形式有加剧煤岩体性质劣化、诱发支护结构失效和导致高温高湿环境三类,具体包括加剧围岩变形破坏、诱发吸附瓦斯溢出、降低锚杆锚固强度、加剧锚护材料腐蚀、损害工人身心健康、降低工人工作效率和增加机械设备故障率七方面。热害控制技术有非人工降温技术和人工降温技术两种,其中非人工降温技术分为热源控制技术、热湿环境调控技术和个体防护技术3类;根据制冷工质不同,可以将人工制冷降温系统分成气冷式、冰冷式和水冷式3大类,包括压缩空气制冷降温、冰制冷降温、地面集中制冷降温、地面排热井下集中降温、回风排热井下集中降温、地面热电联产制冷降温和热害资源化利用等制冷系统。通过提取矿井水和矿井回风中的余热用于矿区井口防冻、洗浴供暖和建筑物供暖,是目前矿山地热利用的主要方法。而直接提取巷道围岩热能的同时实现矿井降温是近年来的研究热点,也是矿山地热直接利用的关键;将地埋管换热器布置在采空区充填材料或巷道围岩内提取围岩热能、实现矿区多种清洁能源协同利用是未来矿山地热利用的发展方向之一。

     

    Abstract: The gradual increase in mining depth will inevitably lead to several problems because of mine geothermal energy. However, although mine geothermal energy poses dangers such as high temperature and heat hazards, it is also a resource that can be developed and utilized. Based on the existing research results, this paper first summarized the disaster-causing forms of mine geothermal energy. Then, the current prevention and control technologies of mine heat hazards were reviewed. Finally, the main utilization methods of mine geothermal energy were summarized. The findings show that the forms of disasters caused by mine geothermal energy can be classified into three types: aggravating the deterioration of coal and rock mass, inducing the failure of supporting structures, and creating high-temperature and high-humidity environments, including aggravating the deformation and failure of surrounding rock, inducing adsorption gas overflow, reducing the anchor pullout force, aggravating the corrosion of the anchor structure, damaging workers’ physical and mental health, reducing the labor efficiency of workers and machines, and increasing the failure rate of machinery and equipment. Two types of heat hazard control technologies are used: artificial and non-artificial cooling technologies. Non-artificial cooling technology can be divided into three categories: heat source control technology, heat-humidity environment control technology, and individual protection technology. According to various refrigerants, an artificial cooling system can be divided into three categories: air-cooled, ice-cooled, and water-cooled, including compressed air refrigeration cooling systems, ice-cooling systems, ground centralized refrigeration cooling systems, surface heat dissipation, underground centralized refrigeration cooling systems, return air exhaust heating underground centralized refrigeration cooling systems, ground cogeneration refrigeration cooling systems, and resource utilization of heat-harm systems. Extracting waste heat from mine water and mine return air for defreezing of the mine head, bath heating, and building heating is the main method for using mine geothermal energy at present, which can effectively reduce the consumption of primary energy at the same time; thus, it is of great significance for promoting green mining and sustainable development of coal mines. Using a buried tube heat exchanger to extract thermal energy from surrounding rock and realizing the coordinated use of several types of clean energy in a mining area is a future development direction for mine geothermal energy use. By drilling holes in the surrounding rock of a coal mine roadway, the buried pipe heat exchanger is arranged in the surrounding rock of the roadway, and water or organic matter is used as a heat exchange medium. The geothermal energy of roadway surrounding rock is extracted using ground source heat pump technology. In addition, for mining areas with excellent lighting conditions or sufficient wind energy, wind power generation and photovoltaic power generation/heat collection can be used simultaneously, and the produced electric energy and thermal energy can be directly used by users and for water pumps, heat pump units, and so on. The results of this paper provide a reference for mine heat hazard control and resource utilization in our country.

     

/

返回文章
返回