一种用于景象匹配导航的新型图像配准算法

A novel image registration algorithm for Scene matching navigation

  • 摘要: 高精度定位与导航是实现无人机自主飞行的关键技术之一。景象匹配视觉导航技术因其设备结构简单、被动式定位精度高等特点,能与惯性系统组合构成自主性很强的高精度导航系统。在景象匹配系统中核心在于对实时拍摄获取的图像与预先装载的基准图进行配准,由于无人机的高速飞行以及基准图多源的特点,这对图像配准在保证精度的同时对速度与鲁棒性提出了很高的要求。为了解决这一问题,我们提出了一种高精度高鲁棒性且便于图像匹配的描述子DSOG,该描述子通过对图像定向梯度信息的像素特征进行描述实现对图像特征的提取。该特征是像素级HOG描述子的扩展,具有优异的图像匹配性能和计算效率。同时提出了一种优化后的相似度度量匹配模板,在频域上对传统的利用快速傅里叶变换(FFT)定义基于特征表示的快速相似度度量算法进行了优化,去除了匹配过程中的冗余量。本文所提出的匹配框架已经用许多不同类型的多模态图像进行了评估,结果表明,与最先进的方法相比,其匹配性能优越。

     

    Abstract: High-precision positioning and navigation are among the key technologies for achieving autonomous flight in unmanned aerial vehicles (UAVs). Image matching-based visual navigation technology, characterized by its simple device structure and high passive positioning accuracy, can be integrated with inertial systems to form a highly autonomous high-precision navigation system. The core of the image matching system lies in the registration of real-time captured images with pre-stored reference images. Due to the high-speed flight of UAVs and the multi-source nature of the reference images, this poses high demands on the accuracy, speed, and robustness of image registration. To address this issue, we propose a descriptor that is both high in accuracy and robustness, and facilitates image matching. This descriptor, termed DSOG, describes the pixel features of the image orientation's gradients. DSOG possesses outstanding image matching performance and computational efficiency. Additionally, an optimized similarity measurement matching template is proposed, which refines the traditional fast similarity measurement algorithm based on feature representation using Fast Fourier Transform (FFT) in the frequency domain, thereby eliminating redundancy in the matching process. The matching framework proposed in this paper has been evaluated with numerous different types of multimodal images, and the results indicate that it outperforms state-of-the-art methods in terms of matching performance.

     

/

返回文章
返回