-
摘要:
富镍三元正极材料(LiNixCoyMnzO2, x≥0.8)具有高能量密度、长循环寿命、低成本及绿色环保等优势,被认为是目前最具发展潜力的锂离子电池正极材料之一,特别在电动汽车和可再生能源储存系统中有着广阔的应用前景. 然而,随着镍含量不断提高,富镍三元正极材料在结构及界面稳定性、循环和安全性能等方面面临诸多挑战,严重制约了其大规模产业化应用. 鉴于此,本文首先综述了富镍三元正极材料目前面临的各种挑战,包括锂镍混排与不可逆相变、表面残碱与界面副反应、应力应变与微裂纹及过渡金属溶解等问题,并对其形成的原因、存在的危害以及演变的过程进行了详细的阐述. 随后针对上述存在的各种问题,系统总结了富镍三元正极材料主要的改性策略,包括离子掺杂、表界面修饰、单晶化结构设计、浓度梯度和核壳结构设计等,旨在提高材料的整体性能. 最后,针对富镍三元正极材料的未来发展方向进行了展望. 本文为富镍三元正极材料的研究提供全面总结和分析,为高比能长循环高安全富镍三元正极材料的设计开发和实践应用提供参考.
Abstract:Ni-rich ternary cathode materials (LiNixCoyMnzO2, x ≥ 0.8) have significant potential for use in lithium-ion batteries because of advantages that include their high energy density, long cycle life, low cost, and environmental sustainability. In particular, they have great application prospects in electric vehicles and renewable energy storage systems. However, with an increase in Ni content, materials face numerous challenges in terms of their structural and interfacial stability, cycling, and safety. The fundamental reason for these issues is the hybridization of the 3d orbitals of transition metals with the 2p orbitals of oxygen. During the charge and discharge processes, the oxidation state of transition metals such as Ni varies between +2 and +4 valences, and hole states are spontaneously generated at the O 2p energy level. The density of the hole states in the O 2p orbitals increases with the state of charge (SOC), ultimately leading to the release of lattice oxygen. With this increase in the amount of released lattice oxygen, layered phases transition to spinel or rock salt phases, which affect the electrochemical activity of the material. In addition, the H2–H3 phase transition at approximately 4.2 V can lead to intergranular slip and the formation of intergranular microcracks. These exacerbate the harmful reactions at the cathode-electrolyte interface, leading to a significant decrease in cycling stability. These issues become even more serious if the Ni content is greater than 90%, which seriously restricts its large-scale industrialized application. This paper first reviews the various challenges currently faced by Ni-rich ternary cathode materials, including lithium-nickel mixing and irreversible phase transitions, surface residual alkali and interfacial side reactions, stress-strain and microcracking, and transition metal dissolution. Furthermore, a comprehensive analysis of the causes, associated hazards, and evolution of these issues is provided. Subsequently, the main modification strategies for Ni-rich ternary cathode materials, including ion doping (such as of anions/cations), surface and interface modification (such as using electrochemically inert materials, ionic/electronic conductive materials, and a lithium residue compound), single-crystal structural design, concentration-gradient application, and core–shell structure design, which all aim to improve the overall performance of the materials, are summarized systematically. Finally, the paper reviews future development directions for Ni-rich ternary cathode materials, including (1) the precise design and regulation of material structures at the molecular level to address material challenges from a molecular design perspective; (2) considering green and controllable synthesis and closed-loop recycling to achieve the high-value utilization of resources; (3) adopting non-destructive testing technologies to accurately analyze battery behaviors such as thermal runaway, structural degradation, and life cycle decay, to ensure the efficient operation and safety of the battery; and (4) utilizing artificial intelligence (AI) and big data analysis techniques to develop more accurate, comprehensive, and effective SOC/SOH (state of health) prediction models, which will enable the real-time assessment of the state and health of a battery. This paper provides a comprehensive summary and scientific analysis of the research conducted on Ni-rich ternary cathode materials. Furthermore, it provides a reference for their design, development, and practical application to attain a high specific energy, long cycle time, and high level of safety.
-
近年来,化石能源危机和环境污染问题日益严重,开发绿色可持续发展的新能源已成为科研人员关注的重点问题之一[1−2]. 锂离子电池作为新能源发展不可或缺的组成部分,凭借其长循环寿命、高能量密度及绿色环保等优势,广泛应用于便携式消费电子设备、新能源汽车及储能系统等诸多领域[3−5]. 正极材料作为锂离子电池关键组成部分,直接决定了电池的能量密度和循环寿命. 在众多正极材料中,富镍三元正极材料(如LiNixCoyMnzO2或LiNixCoyAlzO2,x≥0.8)因高能量密度备受关注. 然而,富镍三元正极材料在实际应用中仍面临诸多挑战,如锂镍混排与不可逆相变、表面残碱与界面副反应、应力应变与微裂纹、过渡金属溶解以及热稳定性差等[3−7],严重阻碍了其大规模商业化应用. 因此,深入理解富镍三元正极材料存在的本征缺陷,解决充放电过程中存在的各种问题,对提升材料的结构、界面及热稳定性至关重要.
本文对富镍三元正极材料的失效机制进行了讨论,并对其失效成因及演变过程进行了详细阐述,同时基于失效行为对主要改性策略(离子掺杂、界面修饰、单晶化结构设计及特殊结构设计等)做了系统的梳理,明晰了不同改性策略对富镍三元正极材料理化性质和电化学性能的影响,并结合目前研究的进展和不足之处,对富镍三元正极材料未来的发展方向进行了展望.
1. 富镍三元层状正极材料存在的问题
1.1 锂镍混排与不可逆相变
锂镍混排是富镍三元正极材料晶体结构中存在的本征缺陷,一般发生在材料合成、储存和充放电过程中. 由于Ni2+半径(0.069 nm)与Li+半径(0.076 nm)相近,且与其他过渡金属离子相比,Ni2+的迁移能垒更低,易从过渡金属层迁移至锂层. 此外,在富镍氧化物材料中,Ni3+易与Li+发生位置交换,当Ni3+占据Li+位后,其自旋态会发生变化,从Ni3+还原为Ni2+,形成较强的线性Ni2+—O2−—Ni2+/Mn4+超交换,这种强烈的超交换作用为Ni2+迁移至Li+位置提供能量和动力,促使锂镍混排发生[8−10]. 如图1所示,锂镍混排会诱导材料发生不可逆相变,例如材料在存储过程中表面不稳定的Ni3+会自发还原为Ni2+,加剧锂镍混排,并导致非活性岩盐相生成,且在高脱锂态下,材料中形成大量锂空位,相邻原子层之间存在排斥效应,促使Ni2+向Li+空位迁移,材料内部发生从有序层状结构(R-3m)向尖晶石结构(Fd-3m),甚至惰性盐岩相结构(Fm-3m)的不可逆转变. 与层状结构相比,尖晶石和岩盐相结构层间距较小,Li+扩散能垒较高,导致Li+扩散动力学降低,从而降低材料容量[11]. 抑制锂镍混排并提高材料相变可逆性是改善其电化学性能的关键,通常降低材料锂镍混排的有效措施包括:富氧烧结减少Ni2+含量、增加煅烧温度和时间、元素掺杂及表面调控等方式[12]. Yang等[13]通过体相掺Sb铆钉嵌入Ni位,降低了 Li+/Ni2+混排,抑制了层状到混合/岩盐的不可逆相变,增强了富镍材料的结构稳定性.
1.2 表面残碱与界面副反应
富镍三元正极材料表面反应活性高,易与空气中H2O和CO2反应生成Li2CO3、LiOH等碱性惰性化合物,阻碍Li+扩散,增加电荷转移阻抗,降低材料可逆容量[14−15],如图2(a)所示. 表面碱残留物会降解粘结剂聚偏氟乙烯(PVDF),引起涂布制片前浆料凝胶化,影响极片活性材料均匀性. 如图2(b)所示,在高电压状态下,残碱化合物易与电解液发生反应,产生CO、CO2和O2等气体,导致电池鼓包,引发电池热失控[16−17]. 此外,表面残碱还会引发锂镍混排、不可逆相变、微裂纹以及界面副反应等诸多问题[18]. 表面残碱形成原因主要有:(1)混锂阶段锂源过量,随着镍含量升高,煅烧温度降低,导致部分锂盐沉积在材料表面,形成锂残渣[19];(2)不稳定的Ni3+易还原为Ni2+,由于电荷补偿,晶格中的O2−会氧化为O−自由基或氧气O2,与表面Li+反应生成LiO,并与空气中H2O及CO2反应造成表面残碱的积累[15, 20];(3)富镍材料空气敏感性高,易吸潮,与空气中H2O和CO2反应生成Li2CO3和LiOH等残碱化合物[21]. 界面修饰和清洗工艺是降低或消除表面残碱的有效措施. 在材料表面构筑稳定包覆层是降低表面残碱的常见策略,利用残碱在颗粒表面原位生长有利于Li+传导的涂层,或选择氧化物、氟化物或磷酸盐等包覆材料进行表界面修饰,可在消除残碱的同时实现表界面及结构稳定性提高[17−18, 22]. 此外,采用水洗工艺也可消除表面残碱,但是,水洗过程材料表面容易发生重构,甚至形成类NiO岩盐相,导致材料界面阻抗增加. 此外,水洗过程存在Li+与H+之间的交换反应,生成的类NiOOH相受热易分解,产生的H2O和O2会破坏材料结构,从而降低材料热稳定性[23−24]. 选取非水溶剂替代水洗可避免上述问题,如图2(c)所示,Su等[25]采用硼酸乙醇洗涤富镍正极材料,显著清除了材料表面残碱,并提升了材料结构稳定性和电化学性能.
1.3 应力应变与微裂纹
富镍正极材料循环过程受应力应变作用,引发微裂纹形成与扩散,是造成材料机械失效的主要原因. 在充放电循环过程中,Li+反复脱出和嵌入导致体积发生收缩与膨胀,这种不均匀的体积变化会造成局部应力集中,引发微裂纹的产生,造成材料结构坍塌[26]. 材料循环过程应力分布与颗粒微观结构、形貌分布及组分浓度紧密相关,尤其在富镍材料中,镍氧化还原反应能力较强,充放电过程中活性锂浓度分布不均匀,造成应力分布不均,导致材料在循环过程更容易产生微裂纹[27]. 微裂纹形成为电解液侵蚀活性材料提供通道,随着长循环过程中材料不均匀应力应变积累,微裂纹加剧扩散,导致循环后颗粒结构坍塌甚至粉化,材料离子和电子导电率显著降低,电化学性能衰减严重[28]. 晶格结构稳固和有效缓解体积变化是抑制应力应变与微裂纹产生的关键措施,通常采用痕量元素掺杂、表界面化学环境重构及微观结构调控,调节晶格结构并有效缓解体积变化[29−37].
Huang等[38]研究了定向掺杂对富镍正极材料LiNi0.8Co0.1Mn0.1O2(Bare-NCM)的多尺度应力调控作用,如图3(a)所示,可视化分析了循环后颗粒的横截面和应力分布,原始电极循环100周后,由于晶粒随机取向,应力积累严重,内部出现了大量微裂纹;Mg2+和W6+掺杂样品(Mg-NCM/W-NCM)缓解了晶格变化,调控了晶粒径向分布,减轻了拉伸和压应力,颗粒内部裂纹明显减少;W6+/Mg2+共掺杂样品(MgW-NCM),应力进一步降低,抑制了微裂纹形成,保证了二次颗粒的力学完整性,该研究证明靶向掺杂可以实现多尺度结构调控,缓解应力积累,抑制循环过程材料结构的机械降解. 如图3(b)所示(CG: Concentration gradient),Park等[39]通过调控前驱体微观结构,实现了一次颗粒在高荷电状态下的均匀收缩,抑制了局部应力集中,并且通过引入铝源细化晶粒,进一步消除了晶格反复收缩/膨胀产生的应力积累,提高了电池的循环寿命和能量密度.
1.4 过渡金属溶解、迁移与沉积
过渡金属从正极材料溶解并迁移至负极表面沉积,是活性材料循环过程化学降解的主要因素[40]. 富镍正极材料循环过程不可避免的Jahn-Teller效应、不可逆相变和氧流失、电解质氧化分解及产生的HF侵蚀等现象,尤其在高温、高电压条件下,均会加剧过渡金属溶解与迁移[41−42]. 其中,Jahn-Teller效应会改变过渡金属阳离子电子结构,导致晶体结构局部扭曲,同时加剧晶胞体积收缩和膨胀,造成局部应力集中,促使过渡金属离子从晶格中脱出并溶解至电解液中[43]. 由于充电过程存在相转变,伴随体积变化和晶格氧流失,形成的晶格氧空位和缺陷会引发过渡金属歧化反应,且活性氧逸出至电解液中会加速电解质氧化分解,产生HF等侵蚀活性正极材料,加剧过渡金属溶解与迁移[44−45]. 如图4所示,通过正极颗粒截面的化学成像和长循环后负极表面的电子探针X射线分析(EPMA),发现过渡金属溶解会严重损耗活性正极材料,导致正极材料容量不可逆损失,且会引发结构完整性退化,造成正极材料循环稳定性下降[46]. 此外,溶解的过渡金属离子会在负极表面沉积形成惰性层阻碍锂离子传输,甚至可能诱发锂枝晶生长,造成安全隐患[44, 47−49]. 正极材料体相晶格调控、表面涂层保护及电解液成分优化等,是抑制循环过程过渡金属溶解、迁移与沉积的有效策略[50−54]. 通过离子掺杂和缺陷工程调控体相晶格,改变活性过渡金属离子的电子密度分布,抑制Jahn–Teller效应并稳固晶格结构. 同时在电极表面构筑保护层,减少电极与电解质直接接触,可以在一定程度上抑制过渡金属溶解. 此外,可通过调控添加剂等优化电解液成分,抑制电解质氧化和酸性物质的产生. Park等[52]采用微量氟代碳酸乙烯酯作为添加剂,调控电解液组分,在循环过程构筑了富LiF的固体电解质界面膜(SEI),有效抑制了过渡金属的溶解与迁移,显著提高了正极材料循环稳定性.
2. 富镍三元层状正极材料的改性策略
2.1 离子掺杂
离子掺杂是调控晶格参数,稳定晶体结构,改善富镍三元正极材料电化学性能的有效方法. 离子掺杂的作用效果如下:(1)阻碍或抑制Ni2+向Li层迁移,降低锂镍混排[9];(2)提高材料导电性,降低电极极化[52];(3)拓宽Li+迁移通道,提高扩散速率[55];(4)强化过渡金属与氧之间的键合关系,抑制晶格氧的逸出和不可逆相变的发生[56−57];(5)表层渗透构筑钝化层或构建稳定的表界面化学环境,抑制电极/电解质界面副反应[58]. 其中,不同离子占据位点、作用效果及调控机制都不尽相同,下面将从阴/阳离子的角度分别介绍掺杂对富镍正极材料的影响.
2.1.1 阳离子掺杂
富镍三元正极材料中掺杂阳离子可取代过渡金属位(Ni2+、Co3+、Mn4+)或锂位(Li+). 过渡金属位掺杂离子包括:Mg2+、Al3+、Co3+、Ti4+、Ta5+、Cr6+等[59−65],其中Al3+半径较小,电荷较高,且Al—O键更强,可有效抑制Li+/Ni2+混排,降低充放电过程晶格体积变化,缓解体积收缩/膨胀所造成的应力集中,强化富镍材料晶体结构,是最常用的过渡金属位掺杂离子[59, 66−67];如图5(a)所示,Yang等[59]通过在混锂阶段加入不同量的纳米Al2O3,制备了Al3+掺杂的富镍LiNi0.88Co0.095Mn0.025O2(LNCMO)正极材料,其中摩尔质量分数2% Al3+掺杂的样品(LNCMO-Al2.0%)表现出最佳的电化学性能,1C下循环150周容量保持率从52.26%提升至91.57%,电化学稳定性显著改善(图5(b)). 这归因于Al3+掺杂改善了层状正极材料MeO6八面体的对称性,稳定了晶体结构. 常见的锂位掺杂离子包括:K+ 、Na+、Ca2+等[68−71],其中Na+可拓宽Li+扩散通道,且可充当“电磁中心”,抑制循环过程Ni2+的迁移,降低不可逆相变和Li+/Ni2+混排的发生[69−70, 72−73]. Shen等[69]将Na+作为“电磁中心”,增强了Li+扩散能力,改善了储锂性能,抑制了Li+/Ni2+混排和不可逆相变. 改性后的材料在0.5C下循环100周容量保持率高达93.3%. 该工作提出“电磁中心”这个概念,以“支柱”效应为基础延伸,从根源上改善了材料存在的结构稳定性差等问题,为更深入研究离子掺杂的作用机理提供了有价值的借鉴.
2.1.2 阴离子掺杂
阴离子掺杂剂可通过取代氧位改善材料性能,常见的阴离子掺杂剂包括:F−、Cl−、S2−等[60, 74−78]. F−电负性较强,可与过渡金属构建强键合关系,削弱过渡金属离子氧化还原对晶格的破坏力,增强材料的机械强度,抑制晶格畸变和活性氧的逸出,提升材料热稳定性,且适量F−掺杂可拓宽锂层间距,促进Li+的迁移扩散[60, 74, 79]. 此外,F−能够改变电子密度分布,提升材料导电性[75]. Yue等[80]研究了F掺杂量对层状氧化物正极材料结构及电化学性能的影响,随着掺杂量增加,材料初始放电比容量降低,但与未改性样品相比,其倍率和循环性能显著提升,进一步说明微量F−可在富镍材料中发挥重要作用.
如图6(a)、(b)所示,Qiu等[60]通过计算相邻八面体和四面体位点之间离子的能量差(ΔE)以及原位电化学测试,确定了微量F−掺杂能够增加过渡金属(TM)Ni的迁移能垒,抑制H2–H3的不可逆相变,提高材料的结构稳定性和电化学性能. 此外,不同扫速的循环伏安法(Cyclic voltammetry, CV)测试结果如图6(c)所示,通过峰值电流(Ip)和扫描速率(ν)计算了Li+的扩散系数,结果表明,与原始材料LiNi0.9Co0.05Mn0.05O2(NCM955-F0)相比,F−掺杂后材料(NCM955-F1)的Li+扩散系数明显提高(NCM955-F1:2.23×10−10 cm2·s−1,NCM955-F0:1.53×10−10 cm2·s−1),显著改善了Li+的传输动力学. 显然,Qiu等选择强电负性的F−,增强了原子间的键合关系,解决了富镍材料存在的Li+传输缓慢以及不可逆相转变等问题,制备出了性能优异的富镍三元正极材料,为阴离子在富镍正极材料中的应用奠定了研究基础.
2.1.3 阴阳离子共掺杂
单一的阴/阳离子掺杂虽然在一定程度上能解决富镍三元正极材料所面临的科学难题,但其作用效果有限,基于这一考量,研究人员提出了阴阳离子共掺杂的作用调控机制,通过协同抑制Li+/Ni2+混合和晶格氧逃逸,减轻应力应变积累,从而改善材料电化学性能. Zhou等[81]开发了F−/Mg2+原位共掺杂策略,解决了富镍三元材料存在的结构不稳定和热稳定差等问题. 结果显示,F−/Mg2+在富镍三元正极材料内部协同作用,不仅能够抑制活性氧的逸出和锂镍混排缺陷,缓解应力积累和微裂纹形成,还能够降低Li+的迁移能垒,改善Li+的扩散动力学.
如图7(a)所示,Peng等[82]采用简单的高温固相法合成了Al3+/F−共掺杂的富镍三元正极材料Li[(Ni0.92Co0.05Mn0.03)1−xAlx]O2−zFz(NCMAF),晶体结构显示,与原始材料LiNi0.92Co0.05Mn0.03O2(NCM)相比,掺杂后材料锂层间距(TLiO6)明显扩展,有助于提升材料电化学性能,如图7(b)所示,在1C下循环200周容量保持率高达72.7%. 该研究进一步证实阴/阳离子共掺杂是一种有效的优化富镍三元正极材料的措施,能够显著优化结构及界面稳定性、改善热稳定性、调节反应动力学等,这为富镍三元正极材料的发展提供了新思路.
2.2 界面修饰
界面修饰被认为是调节界面副反应的有效手段. 通过材料表界面修饰能够阻碍活性电极/电解质界面直接接触,抑制电解质的氧化分解,降低HF等酸性产物的化学侵蚀,减轻过渡金属的溶解,稳定材料晶体结构,同时还可以提高材料的离子/电子导电性,促进界面电荷转移,提升富镍三元材料电化学性能[83−85]. 其中,选择合适的界面修饰材料对开发高性能富镍三元正极材料至关重要,然而,不同界面修饰材料的物理化学性质对富镍三元材料性能的影响仍然需要系统的归纳和总结.
2.2.1 电化学惰性材料包覆
(1) 金属氧化物.
金属氧化物是典型的惰性包覆材料,在充放电过程中不参与电化学反应,可作为活性正极和有机电解质之间的物理屏障,且因其具有优异的化学稳定性、热稳定性和机械强度,能够显著改善富镍三元正极材料的电化学性能[86]. 常见的金属氧化物包覆材料有:Al2O3、ZnO、TiO2、MgO、Cr2O3、ZrO2和SiO2等[87−93]. Gao等[87]证实了将Al2O3包覆在富镍三元正极材料表面能够隔绝活性正极与电解液之间的直接接触,抑制界面副反应以及过渡金属溶出,改善材料循环稳定性. 如图8(a)所示,Lai等[88]通过磁控溅射技术将ZnO均匀涂覆在富镍LiNi0.8Co0.15Al0.05O2 (NCA)正极材料表面,且包覆层厚度随溅射时间的增加而增加,其中透射结果表明,ZnO薄膜完全均匀地覆盖在NCA电极上. 与原始样品相比,ZnO包覆后样品的初始放电比容量有所提高,且优化后的电极材料在1C下循环90周后,放电比容量为169 mA·h·g−1,远高于原始NCA电极的127 mA·h·g−1(图8(b)). 该研究为惰性包覆层在富镍三元正极材料表面的沉积提供了新技术. Lee等[93]研究了不同SiO2 包覆量的富镍LiNi0.8Co0.1Mn0.1O2 正极材料,其中质量分数0.25% SiO2包覆的样品表现出最佳的电化学性能,0.1C下,初始容量为200.7 mA·h·g−1,且在0.5C下循环100周后容量保持率能够达到87.3%. 综上所述,适量的惰性包覆层能够有效抑制不可逆相变,保护活性电极不受电解液腐蚀,有效提高富镍三元材料的电化学稳定性.
(2) 金属氟化物.
金属氟化物也是常见的惰性包覆材料,其具有较强的抗HF腐蚀能力,能够辅助富镍三元正极材料发挥优异的电化学性能. 常见的金属氟化物包覆材料有:AlF3、FeF3、LiF等[94−98]. Lee等[95]在富镍LiNi0.8Co0.15Al0.05O2正极材料表面包覆了一层厚度为50 nm的AlF3,结果表明,包覆后材料的循环稳定性、倍率性能以及热稳定性均得到了改善,特别是其全电池循环性能显著提升,在55 ℃高温下,循环500周容量保持率可达55.9%,而原始电极容量保持率仅为11.7%. 如图9(a)所示,Chu等[98]通过一步双改性策略,在LiNi0.8Co0.1Mn0.1O2正极材料表面原位合成了热稳定性良好的LiF&FeF3双包覆涂层. 双包覆处理后材料的Li/Ni交换能高于原始样品,有效防止了锂镍混排、过渡金属溶出以及不可逆相变的发生,且LiF&FeF3包覆层能够抑制电解液的分解和界面副反应的发生. 此外,优化后电极表现出优异的电化学性能,如图9(b)所示,在常温,5C下循环300周容量保持率高达86.4%. 该研究工作为氟化物包覆层在富镍正极材料表面的实际应用提供了依据.
(3) 金属磷酸盐.
金属磷酸盐作为界面修饰材料,不仅能够抑制相变和界面副反应,还能够提高材料的离子导电性. 常见的金属磷酸盐包覆材料有:AlPO4、FePO4、LaPO4、Li3PO4等[99−102]. 如图10(a)所示,Zha等[100]通过湿化学法将不同质量的FePO4覆在了LiNi0.8Co0.1Mn0.1O2 (NCM811)正极材料表面,其中从循环400周后电极的扫描电镜图(SEM)可以看出,包覆后能够显著减轻充放电过程中二次颗粒的破碎,稳定材料的晶体结构(图10(b)). 且质量分数3.02% FePO4包覆的样品(LFP3@NCM811)表现出最佳的电化学性能,如图10(c)所示,该样品在0.1C下的初始放电比容量为218.8 mA·h·g−1,且在0.2C,2.7~4.5 V电压下范围内循环400周后容量保持率高达到86%,明显优于原始正极材料. Abebe等[103]在LiNi0.9Co0.05Mn0.05O2表面包覆了一层Li3PO4,提高了材料电极–电解质界面的化学稳定性,抑制了过渡金属溶解,提高了材料的离子电导率、倍率性能和长循环稳定性. 电化学测试表明,在1C下循环200周后,优化后电极容量保持率能够达到90.2%,且在10C大倍率条件下能够发挥出175.1 mA·h·g−1的高放电比容量,性能明显优于原始材料. 该包覆层的设计兼顾了结构相容性和导电性,在不影响锂离子传输的条件下,改善了电极电解质之间的界面稳定性,该研究对金属磷酸盐在富镍正极材料表面的应用具有重要的参考意义.
2.2.2 离子/电子电导性材料包覆
(1) 离子电导性材料.
电化学惰性材料虽然能够作为富镍活性电极与有机电解质之间的物理屏障,解决界面副反应以及过渡金属溶解等问题,但其离子绝缘性会阻碍Li+的迁移扩散,而离子电导性材料不仅可以实现对活性正极材料的物理保护,提升材料的结构及界面稳定性,还能很好地促进Li+的快速迁移,改善富镍三元正极材料存在的倍率性能差等问题. 常见的离子电导性包覆材料有:Li2TiO3、Li2SnO3、Li2ZrO3、LiTaO3、Li2SiO3、Li2MnO3、LiNbO3等[104−111]. Xiong等[105]通过近平衡沉积策略,在LiNi0.8Co0.1Mn0.1O2表面均匀涂覆了一层Li2TiO3,由于Li2TiO3的界面保护作用,提高了LiNi0.8Co0.1Mn0.1O2正极材料的循环稳定性,在0.5C下循环200周,容量保持率从67.2%提升至93.5%. 此外,Li2TiO3的高离子导电性,改善了Li+的扩散动力学,提升了富镍三元正极材料的倍率性能. Liu[106]等对比了惰性SnO2和离子电导性材料Li2SnO3的包覆效果,结果表明,两种包覆材料均能缓解锂镍混排、抑制电极/电解质界面副反应,降低界面阻抗,但与SnO2相比,Li2SnO3作为包覆材料能够促进Li+在电极/电解质界面的迁移,因此,表现出更加优异的电化学性能. 如图11(a)所示,Huang等[110]通过超声破碎、蒸发诱导自组装(EISA)以及退火热处理工艺,在富镍LiNi0.8Co0.1Mn0.1O2 (NCM811)正极材料表面包覆了不同厚度的Li2MnO3 (LMO),包覆量为3%时效果最佳(NCM811@LMO-3%). 图11(b) 恒电流间歇滴定测试(GITT)以及Li+计算结果显示,NCM811@LMO-3%的Li+扩散系数($ {D}_{{\mathrm{L}\mathrm{i}}^{+}} $)为3.0×10−9 cm2·s−1,较NCM811的4.0×10−10 cm2·s−1高出了一个数量级,这可归因于Li2MnO3促进了Li+的快速传输. 优化后材料的循环稳定性显著提升,在常温、1C下循环500周后容量保持率高达80.4%(图11(c)). Li2MnO3与层状氧化物正极材料具有较好的结构相容性,因此,能够与富镍正极材料表面实现更加紧密、均匀的结合,此外,Li2MnO3中的Mn4+可以保证富锰材料优异的热稳定性. 该离子电导性包覆材料可以作为稳定富镍正极材料的可靠涂层候选者,以增强材料的整体性能.
(2) 电子电导性材料.
电子电导性材料是一种促进电子传输的介质,其附着在富镍正极材料表面能够调节充放电过程中电荷平衡,保证Li+的快速脱嵌. 常见的电子电导性包覆材料包括碳基材料(石墨烯、多孔碳、碳纳米管等)[112−115]、导电高分子聚合物(聚吡咯PPy、聚3, 4乙烯二氧噻吩PEDOT、聚苯胺PANI等)[116−119]以及其他电子导体材料等[120]. Tian等[114]将3D多孔石墨烯(GA)气凝胶包覆在LiNi0.6Co0.2Mn0.2O2 (NCM)正极材料表面(NCM@GA),石墨烯纳米片随机缠绕形成三维多孔导电气凝胶网络,经包覆处理后的电极材料具有优异的倍率性能,0.1C放电比容量为189.9 mA·h·g−1,5C时放电比容量为130.9 mA·h·g−1,10C时放电比容量仍能达到106.8 mA·h·g−1,这可归功于多孔石墨烯气凝胶促进了Li+和电子的快速传输,同时特殊的骨架结构缓解了Li+脱嵌过程的体积变化,保障了充放电过程中颗粒的完整性. Cao等[119]设计了一种集聚苯胺(PANI)电子导电性和聚乙二醇(PEG)离子导电性于一体的复合导电聚合物,用于LiNi0.8Co0.1Mn0.1O2正极材料的表面修饰,如图11(d)所示为合成示意图. 该导电聚合物(PANI–PEG)具有优异的弹性,能够充分缓解宿主材料因体积收缩/膨胀所导致的应力积累,抑制过渡金属溶出. 如图11(e),与原始材料相比,经过表面处理的材料表现出更好的循环稳定性. 此外,PANI–PEG良好的导电性促进了富镍三元正极材料中电子和Li+的迁移,显著改善了材料的倍率性能.
2.2.3 锂残积化合物包覆
富镍正极材料表面残余锂的积累,是恶化电极电化学稳定性以及存储性能的关键因素,利用残余锂在颗粒表面原位生长有利于Li+传导的涂层是消除表面残余锂潜在负面影响的有效手段,可以实现残锂的“变废为宝”[121−125]. Wang等[121]通过三氟乙醇与残锂化合物反应,在富镍材料表面构筑了一层薄而均匀的氟化物,阻碍了Li+/H+交换,抑制了表面劣化,且将表面处理后的电极置于空气中一段时间,仍能表现出优异的电化学性能,进一步验证了锂残积化合物包覆富镍正极材料的可行性. 如图12(a)所示,Liu等[122]制备了In2O3&LiInO2双包覆的LiNi0.8Co0.1Mn0.1O2正极材料,首先通过湿法搅拌使In(NO3)3附着在富镍材料表面,热处理后形成In2O3包覆层,In2O3与残锂化合物反应生成LiInO2,最终在富镍材料表面形成In2O3&LiInO2双包覆层. 该包覆层不仅作为残锂清除剂,减轻了富镍正极对空气中H2O和CO2的敏感性,还能充当物理屏障,保护正极材料免受HF攻击. 如图12(b)~(d)所示,材料表现出优异的循环和倍率性能,1 C下循环100周容量保持率高达90%以上,5 C下循环300周容量保持率也能达到86.4%,且由于材料表面形成了快离子导体包覆层,能够促进Li+的快速传输,并提供额外的Li+脱出/插入位点,因此表现出更加优异的倍率性能.
2.3 单晶化结构设计
富镍多晶(PC)正极材料在充放电过程中容易形成晶间裂纹,破坏二次颗粒结构完整性,导致颗粒内部电导率下降,造成电荷分布不均匀,且由于更多的活性表面被暴漏在电解液中,加剧界面副反应,加速材料结构坍塌,但单晶(SC)化结构设计能够显著提升材料的机械强度,攻克富镍材料结构稳定性差的难题. 单晶化结构设计的优势有:(1)机械强度高且无晶界,可避免长循环过程中因应力积累导致的微裂纹;(2)表面能量较低,可有效减少与电解质之间的副反应,提升界面稳定性[126−128]. 如图13(a)所示,Li等[129]制备了Li2MoO4 包覆的多晶LiNi0.9Mn0.1O2(1.0%Mo+NM91) 和单晶LiNi0.9Mn0.1O2 (SC-NM91)两种正极材料,系统研究了包覆/单晶改性抑制性能衰减的内在机制,与多晶包覆样品1.0%Mo+NM91相比,单晶化有效解决了由各向异性应力所产生的晶间裂纹问题,表现出更加优异的循环稳定性,在0.2C下循环100周,SC-NM91的容量保持率为80.8%,循环200周,容量保持率为65.9%,进一步证明单晶化结构设计是一种改善富镍正极材料性能的有效措施. Yoo等[130]对比了各组分含量相同的单晶和多晶正极材料,结果表明,单晶机械强度高、粒径分布均匀且比表面积低,与多晶相比,单晶在经过长周期循环后能够保持颗粒的完整性,减少微裂纹,具有更加稳定的长循环性能. 但该研究也表明锂源的添加量和烧结温度均会影响单晶材料的性能,因此,在进行单晶化结构设计时要严格控制制备工艺条件.
Figure 13. (a) Results of comparison of 1.0%Mo+NM91 and SC-NM91 mechanisms and corresponding cycling performances[129]; (b) schematic illustration showing the alleviation of the anisotropic microstrain in the layered structure during the de-lithiation process via introducing a core-shell structure and the corresponding cycling performance[131]2.4 特殊结构设计
目前,富镍三元正极材料常见的特殊结构设计主要有浓度梯度和核壳结构. 浓度梯度指在材料的不同区域,元素的组成和浓度逐渐变化,形成从内到外的“梯度”结构,这种设计通常在材料中心维持高镍含量,并向表面逐渐降低镍含量,同时增加锰含量,以增强材料的结构/机械性能和电化学性能. 核壳结构设计中,材料的内核通常是活性物质(如富镍材料),而外壳则是功能性材料(如锰、钴的氧化物或其他导电材料),这种结构能够在内部提供高容量的同时,在外部保证稳定性和安全性. Jing等[131]在750 ℃高温下设计并合成了核壳结构的“富锂富镍”Li1.08Ni0.9Mn0.1O2氧化物(CS-750),该结构由反应性较低的“富锂富锰”壳和高容量的“富锂富镍”核组成,在高温锂化过程中,随着锂和氧进入Ni(OH)2@Mn(OH)2前驱体中,在富镍核上形成了“富锂富锰”壳层,如图13(b)所示,与800 ℃高温下合成的原始样品Li1.08Ni0.9Mn0.1O2(LNMO-800)相比,引入“富锰”壳层可以有效抑制脱锂过程高开路电压下(OCV)“富镍”正极中的各向异性应力应变,保证层状“富锂富镍”核在长循环过程中的结构可逆性,优化后的核壳Li1.08Ni0.9Mn0.1O2正极材料在2.7~4.6 V (1C)条件下循环500周后容量保持率仍可达79%. 但合成这种核壳结构需要严格控制锂化温度,若温度过高,“富锂富锰”外壳会逐渐变薄,甚至消失. Feng等[132]制备了具有梯度结构的富镍材料,内部为LiNi0.90Co0.05Mn0.05O2,外层为薄的梯度层,镍含量较低,优化后材料在1C下循环200周容量保持率高达84.4%. 研究发现,低镍外壳能够降低表面拉应力和晶格失配,增强结构稳定性,为梯度结构设计在富镍材料中的应用提供了新思路.
综上所述,针对富镍三元正极材料面临的挑战,目前解决手段主要包括离子掺杂、界面修饰、单晶化、核壳及浓度梯度结构设计等. 值得注意的是,某些改性措施往往能够同时解决材料存在的多个问题,从而展现出其广泛的适用性和有效性. 同时,针对某些特定问题的解决,需从多个角度进行综合考量,以实现精准调控. 这种多维度的研究思路有助于提升富镍三元正极材料的整体性能. 表1总结了富镍三元正极材料存在的问题及主要解决方案,为研究人员提供一个系统化参考,以便更有效地识别和应对富镍三元正极材料的挑战,推动其在电池技术中的应用进展.
表 1 富镍三元正极材料存在的问题及主要解决方案Table 1. Problems with Ni-rich ternary cathode materials and their solutionsModification strategy Li+/Ni2+ mixing and
irreversible phase
transitionSurface residual
alkali and interfacial
side reactionsStress-strain and microcracking Transition metal
dissolution, deposition,
and migrationReference Ion doping √ √ √ [9, 57] Surface interface modification √ √ √ [83−84] Single-crystalized structure √ √ [126, 129] Core and shell
structure√ √ [131, 133] Concentration gradient √ √ [132, 134] 3. 结论与展望
富镍三元正极材料作为高能量密度锂离子电池的重要组成部分,其性能优化和面临的技术挑战始终是研究的重点. 本文综述了近年来富镍三元正极材料的研究进展,分析了富镍材料的失效机制,总结了目前常见的改性策略,重点探讨了不同掺杂剂(如阴/阳离子)和掺杂位点(锂位、过渡金属位和氧位)、不同的包覆材料(电化学惰性材料、离子/电子导电性材料和以及锂残积化合物包覆材料等)以及不同形式的结构设计(单晶结构、核壳结构以及浓度梯度结构设计等)提升富镍正极材料性能的机理,发现不同的改性措施都能在一定程度上解决材料存在的问题,提升材料的电化学性能,但仍存在一定的局限性. 因此,开发高放电比容量、高安全性能、结构稳定性好以及成本低的富镍三元正极材料仍面临巨大挑战,需要进一步深入研究. 对富镍三元正极材料未来发展进行展望,以期克服现有技术瓶颈,推动其在高能量密度锂离子电池中应用:(1)以改善富镍三元正极材料整体性能为导向,通过全新的分子设计视角解决材料面临的挑战,在分子水平上实现材料结构精准设计与调控. 例如基于理论模拟、大数据分析和高通量计算,优化材料制备工艺和晶体结构,预测材料结构演变以及动力学和热力学行为等,细化材料失效机制,加速新型高性能富镍三元正极材料的研发;(2)在富镍三元正极材料合成过程,通常伴有复杂高温处理和高能耗问题,且部分合成过程可能会对环境造成污染. 未来,需要进一步开发低能耗、低污染的合成技术,以实现富镍三元正极材料的绿色可控合成,同时建立闭环回收体系,通过回收利用反应过程中产生的废物和副产品,实现资源的高值化利用;(3)采用传感器、磁共振、X射线、中子散射、超声波、拉曼散射等先进技术,在真实的环境和使用工况下对富镍正极材料的微观结构、成分分布及在电池工作过程中动态变化进行无损检测,精准分析电池热失控、结构退化以及寿命衰减等演变规律,从而推动富镍正极材料在能量密度、使用寿命以及安全性方面的进一步提高;(4)从宏观的电池层面考虑,深入研究富镍正极材料在不同充放电状态下性能变化对电池状态(State of charge, SOC)和健康状况(State of health, SOH)的影响,采用先进的人工智能(AI)和大数据分析技术,结合富镍正极材料的微观结构和电化学行为,建立更加精准的SOC/SOH预测模型,有助于更好地理解富镍正极材料在实际使用中的退化机制,从而提高正极材料循环寿命、能量密度和热稳定性,推动其在高性能锂离子电池中的应用.
-
图 11 Li2MnO3包覆NCM811. (a) 机理示意图; (b) NCM811和NCM811@LMO-3%样品的GITT曲线和Li+扩散系数; (c) 循环性能[110];NCM@PANI-PEG复合材料的. (d) 合成示意图; (e) 循环和倍率性能[119]
Figure 11. Li2MnO3-coated NCM811: (a) schematic of the mechanism; (b) GITT curves and Li+ diffusion coefficients of NCM811 and NCM811@LMO-3% samples; (c) cycling performance[110]; NCM@PANI-PEG composite material: (d) synthesis; (e) cycling and rate performance[119]
图 13 (a) 1.0%Mo+NM91与SC-NM91的机理比较示意图及对应的循环性能[129]; (b) 通过核壳结构设计减轻脱锂过程中层状结构中各向异性微应变的示意图及对应的循环性能[131]
Figure 13. (a) Results of comparison of 1.0%Mo+NM91 and SC-NM91 mechanisms and corresponding cycling performances[129]; (b) schematic illustration showing the alleviation of the anisotropic microstrain in the layered structure during the de-lithiation process via introducing a core-shell structure and the corresponding cycling performance[131]
表 1 富镍三元正极材料存在的问题及主要解决方案
Table 1 Problems with Ni-rich ternary cathode materials and their solutions
Modification strategy Li+/Ni2+ mixing and
irreversible phase
transitionSurface residual
alkali and interfacial
side reactionsStress-strain and microcracking Transition metal
dissolution, deposition,
and migrationReference Ion doping √ √ √ [9, 57] Surface interface modification √ √ √ [83−84] Single-crystalized structure √ √ [126, 129] Core and shell
structure√ √ [131, 133] Concentration gradient √ √ [132, 134] -
[1] Chang L J, Wei A L, Luo S H, et al. Lithium-ion battery: A comprehensive research progress of high nickel ternary cathode material. Int J Energy Res, 2022, 46(15): 23145 doi: 10.1002/er.8618
[2] 董波, 田庆华, 许志鹏, 等. 新能源战略金属镍钴锂资源清洁提取研究进展. 材料导报, 2023, 37(22):127 Dong B, Tian Q H, Xu Z P, et al. Advances in clean extraction of nickel, cobalt and lithium to produce strategic metals for new energy industry. Mater Rep, 2023, 37(22): 127
[3] Ohzuku T, Brodd R J. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources, 2007, 174(2): 449 doi: 10.1016/j.jpowsour.2007.06.154
[4] 童汇, 谢建龙, 张志谋, 等. 富锂锰基正极材料研究进展. 材料导报, 2025, 39(3):5 Tong H, Xie J L, Zhang Z M, et al. Research progress of Li-rich Mn-based cathode materials. Mater Rep, 2025, 39(3): 5
[5] 陈港欣, 孙现众, 张熊, 等. 高功率锂离子电池研究进展. 工程科学学报, 2022, 44(4):612 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014 Chen G X, Sun X Z, Zhang X, et al. Progress of high-power lithium-ion batteries. Chin J Eng, 2022, 44(4): 612 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014
[6] Zhang S, Ma J, Hu Z L, et al. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem Mater, 2019, 31(16): 6033 doi: 10.1021/acs.chemmater.9b01557
[7] Yin S Y, Deng W T, Chen J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83: 105854 doi: 10.1016/j.nanoen.2021.105854
[8] Wan H, Liu Z X, Liu G D, et al. Unraveling TM migration mechanisms in LiNi1/3Mn1/3Co1/3O2 by modeling and experimental studies. Nano Lett, 2021, 21(16): 6875 doi: 10.1021/acs.nanolett.1c01985
[9] Zheng J X, Ye Y K, Liu T C, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc Chem Res, 2019, 52(8): 2201 doi: 10.1021/acs.accounts.9b00033
[10] Li J X, Liang G M, Zheng W, et al. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review. Nano Mater Sci, 2023, 5(4): 404 doi: 10.1016/j.nanoms.2022.09.001
[11] Wu F, Liu N, Chen L, et al. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J Energy Chem, 2021, 62: 351 doi: 10.1016/j.jechem.2021.03.035
[12] 查国君, 胡耐根, 王发辉, 等. 锂离子电池高镍正极材料中镍锂混排研究进展. 新余学院学报, 2023, 28(1):15 doi: 10.3969/j.issn.2095-3054.2023.01.004 Zha G J, Hu N G, Wang F H, et al. Research progress of mixed nickel and lithium in high nickel cathode materials for lithium ion batteries. J Xinyu Univ, 2023, 28(1): 15 doi: 10.3969/j.issn.2095-3054.2023.01.004
[13] Yang Z L, Zhao Z K, Zhang X Y, et al. Sb-anchoring single-crystal engineering enables ultra-high-Ni layered oxides with high-voltage tolerance and long-cycle stability. Nano Energy, 2024, 132: 110413 doi: 10.1016/j.nanoen.2024.110413
[14] 王天宇, 王丽, 孙伟, 等. 高镍三元材料的研究进展. 化学进展, 2024, 36(7):1026 Wang T Y, Wang L, Sun W, et al. Research progress of Ni-rich cathode materials. Prog Chem, 2024, 36(7): 1026
[15] Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compounds on layer Ni-rich Li [Ni0.7Mn0.3] O2. J Electrochem Soc, 2014, 161(6): A920
[16] Renfrew S E, McCloskey B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J Am Chem Soc, 2017, 139(49): 17853 doi: 10.1021/jacs.7b08461
[17] Seong W M, Cho K H, Park J W, et al. Controlling residual lithium in high-nickel (>90%) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem Int Ed, 2020, 59(42): 18662 doi: 10.1002/anie.202007436
[18] 袁绍辉, 曾子豪, 董煜, 等. 富镍三元层状正极材料表面残碱去除工艺:研究进展、挑战及展望. 中国有色金属学报, 2023, 33(5):1554 doi: 10.11817/j.ysxb.1004.0609.2022-43210 Yuan S H, Zeng Z H, Dong Y, et al. Removal process of residual alkali on surface of nickel-rich ternary layered cathode materials: Research progress, challenges and prospects. Chin J Nonferrous Met, 2023, 33(5): 1554 doi: 10.11817/j.ysxb.1004.0609.2022-43210
[19] Xu S, Du C Y, Xu X, et al. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim Acta, 2017, 248: 534
[20] Su Y F, Li L W, Chen G, et al. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials. Chin J Chem, 2021, 39(1): 189 doi: 10.1002/cjoc.202000386
[21] Oh P, Song B H, Li W D, et al. Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4. J Mater Chem A, 2016, 4(16): 5839
[22] You Y, Celio H, Li J Y, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew Chem Int Ed, 2018, 57(22): 6480 doi: 10.1002/anie.201801533
[23] Hamam I, Zhang N, Liu A, et al. Study of the reactions between Ni-rich positive electrode materials and aqueous solutions and their relation to the failure of Li-ion cells. J Electrochem Soc, 2020, 167(13): 130521 doi: 10.1149/1945-7111/abb9cd
[24] Pritzl D, Teufl T, Freiberg A T S, et al. Editors’ choice—Washing of nickel-rich cathode materials for lithium-ion batteries: Towards a mechanistic understanding. J Electrochem Soc, 2019, 166(16): A4056 doi: 10.1149/2.1351915jes
[25] Su Y F, Chen G, Chen L, et al. Clean the Ni-rich cathode material surface with boric acid to improve its storage performance. Front Chem, 2020, 8: 573 doi: 10.3389/fchem.2020.00573
[26] Nam G, Park N Y, Park K, et al. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett, 2019, 4(12): 2995 doi: 10.1021/acsenergylett.9b02302
[27] Ryu H H, Park K J, Yoon C S, et al. Capacity fading of Ni-rich Li [Ni xCo yMn1– x– y] O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem Mater, 2018, 30(3): 1155
[28] Park N Y, Park G T, Kim S B, et al. Degradation mechanism of Ni-rich cathode materials: Focusing on particle interior. ACS Energy Lett, 2022, 7(7): 2362 doi: 10.1021/acsenergylett.2c01272
[29] Li W D, Lee S, Manthiram A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater, 2020, 32(33): 2002718 doi: 10.1002/adma.202002718
[30] 陈胜, 胡祖飞, 曹洪美, 等. 镁掺杂高镍三元正极材料LiNi0.90Co0.05Mn0.05O2的合成与性能. 应用化学, 2024, 41(4):568 Chen S, Hu Z F, Cao H M, et al. Synthesis and properties of Mg-doped Ni-rich ternary cathode material LiNi0.90Co0.05Mn0.05O2. Chin J Appl Chem, 2024, 41(4): 568
[31] Park N Y, Kim S B, Kim M C, et al. Mechanism of doping with high-valence elements for developing Ni-rich cathode materials. Adv Energy Mater, 2023, 13(34): 2301530 doi: 10.1002/aenm.202301530
[32] Zhang Y D, Liu J D, Xu W C, et al. Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. J Power Sources, 2022, 535: 231445 doi: 10.1016/j.jpowsour.2022.231445
[33] Zhou J W, Chu Y H, Liu W X, et al. Mg/Al double-pillared LiNiO2 as a co-free ternary cathode material ensuring stable cycling at 4.6 V. ACS Appl Mater Interfaces, 2024, 16(11): 13948 doi: 10.1021/acsami.3c17457
[34] 李想, 葛武杰, 马先果, 等. 高镍正极材料微裂纹诱导容量衰减的应对策略研究进展. 化工进展, 2022, 41(8):4277 Li X, Ge W J, Ma X G, et al. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials. Chem Ind Eng Prog, 2022, 41(8): 4277
[35] Yang C K, Qi L Y, Zuo Z C, et al. Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes. J Power Sources, 2016, 331: 487 doi: 10.1016/j.jpowsour.2016.09.068
[36] Wang Z, Liu H, Wu J, et al. Hierarchical LiNi0.8Co0.15Al0.05O2 plates with exposed{010}active planes as a high performance cathode material for Li-ion batteries. RSC Adv, 2016, 6(38): 32365
[37] Park N Y, Han S M, Ryu J H, et al. Tailoring primary particle size distribution to suppress microcracks in Ni-rich cathodes via controlled grain coarsening. ACS Energy Lett, 2024, 9(7): 3595 doi: 10.1021/acsenergylett.4c01397
[38] Huang Q R, Hu Z Q, Dai Z S, et al. Targeted doping enables multi-scale stress regulation for high reliable Ni-rich layered cathodes. Energy Storage Mater, 2024, 72: 103695 doi: 10.1016/j.ensm.2024.103695
[39] Park G T, Park N Y, Noh T C, et al. High-performance Ni-rich Li [Ni0.9– xCo0.1Al x] O2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy Environ Sci, 2021, 14(9): 5084
[40] 占佳琦, 邢丽丹. 锂离子电池正极材料过渡金属离子溶出的危害及抑制研究. 材料研究与应用, 2023, 17(5):902 Zhan J Q, Xing L D. Study on the detriment and inhibition of the dissolution of transition metal ions in cathode materials of lithium-ion batteries. Mater Res Appl, 2023, 17(5): 902
[41] Rynearson L, Antolini C, Jayawardana C, et al. Speciation of transition metal dissolution in electrolyte from common cathode materials. Angew Chem Int Ed, 2024, 63(5): e202317109 doi: 10.1002/anie.202317109
[42] Liu S Q, Wang B Y, Zhang X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter, 2021, 4(5): 1511 doi: 10.1016/j.matt.2021.02.023
[43] Yang T T, Wang X Y, Liu Z B, et al. Cation configuration and structural degradation of layered transition metal oxides in sodium-ion batteries. ACS Nano, 2024, 18(29): 18834 doi: 10.1021/acsnano.4c05739
[44] Asl H Y, Manthiram A. Reining in dissolved transition-metal ions. Science, 2020, 369(6500): 140 doi: 10.1126/science.abc5454
[45] Zhang S S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater, 2020, 24: 247 doi: 10.1016/j.ensm.2019.08.013
[46] 张欣, 孔令丽, 高腾跃, 等. 高镍三元锂离子电池循环衰减分析及改善. 储能科学与技术, 2020, 9(3):813 Zhang X, Kong L L, Gao T Y, et al. Analysis and improvement of cycle performance for Ni-rich lithium ion battery. Energy Storage Sci Technol, 2020, 9(3): 813
[47] Xu H Y, Li Z P, Liu T C, et al. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode. Angew Chem Int Ed, 2022, 61(30): e202202894 doi: 10.1002/anie.202202894
[48] Wachs S J, Behling C, Ranninger J, et al. Online monitoring of transition-metal dissolution from a high-Ni-content cathode material. ACS Appl Mater Interfaces, 2021, 13(28): 33075 doi: 10.1021/acsami.1c07932
[49] Ko D S, Park J H, Park S, et al. Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis. Nano Energy, 2019, 56: 434 doi: 10.1016/j.nanoen.2018.11.046
[50] Tian J S, Wang G, Zeng W H, et al. A bimetal strategy for suppressing oxygen release of 4. 6 V high-voltage single-crystal high-nickel cathode. Energy Storage Mater, 2024, 68: 103344
[51] Shadike Z, Chen Y M, Liu L, et al. Improved cyclic stability of LiNi0.8Mn0.1Co0.1O2 cathode enabled by a novel CEI forming additive. Front Energy, 2024, 18(4): 535
[52] Park G T, Namkoong B, Kim S B, et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat Energy, 2022, 7(10): 946 doi: 10.1038/s41560-022-01106-6
[53] Liu H X, Zhao X Y, Xie Y J, et al. Insights into capacity fading mechanism and coating modification of high-nickel cathodes in lithium-ion batteries. ACS Appl Mater Interfaces, 2022, 14(50): 55491 doi: 10.1021/acsami.2c14235
[54] Li Y C, Qu Q T, Lv L Z, et al. A multifunctional additive capable of electrolyte stabilization and structure/interphases regulation of high-energy Li-ion batteries. Adv Funct Mater, 2024, 34(27): 2314100 doi: 10.1002/adfm.202314100
[55] Kotal M, Jakhar S, Roy S, et al. Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. J Energy Storage, 2022, 47: 103534 doi: 10.1016/j.est.2021.103534
[56] Adamo J B, Manthiram A. Understanding the effects of Al and Mn doping on the H2–H3 phase transition in high-nickel layered oxide cathodes. Chem Mater, 2024, 36(12): 6226 doi: 10.1021/acs.chemmater.4c01033
[57] Wang J Y, Lei X C, Guo S N, et al. Doping strategy in nickel-rich layered oxide cathode for lithium-ion battery. Renewables, 2023, 1(3): 316 doi: 10.31635/renewables.023.202200022
[58] Lei H, Cui X W, Zeng Z H, et al. Directly regenerating of spent LiCoO2 with gradient F-doped subsurface towards ultra-stable storage properties. Angew Chem Int Ed, 2025, 64(2): e202414918 doi: 10.1002/anie.202414918
[59] Yang X, Tang Y W, Shang G Z, et al. Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl Mater Interfaces, 2019, 11(35): 32015
[60] Qiu Q Q, Yuan S S, Bao J, et al. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution. J Energy Chem, 2021, 61: 574
[61] Gomez-Martin A, Reissig F, Frankenstein L, et al. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries. Adv Energy Mater, 2022, 12(8): 2103045 doi: 10.1002/aenm.202103045
[62] Peng J Q, Wei Y Y, Liu D M, et al. Enhanced cycling stability and rate performance of Co-doped and La2O3-coated LiNi0.9Mn0.1O2 toward power battery. Rare Met, 2024, 43(2): 658
[63] Wang Y, Deng Y T, Song Y, et al. Relieving strain accumulation in ultra-high Ni cathode to achieve long cycle stability. Energy Storage Mater, 2024, 72: 103716 doi: 10.1016/j.ensm.2024.103716
[64] Zou Y G, Mao H C, Meng X H, et al. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode via surface gradient penetration of tantalum. Angew Chem, 2021, 133(51): 26739 doi: 10.1002/ange.202111954
[65] Fan Y M, Olsson E, Johannessen B, et al. Manipulation of transition metal migration via Cr-doping for better-performance Li-rich, co-free cathodes. ACS Energy Lett, 2024, 9(2): 487 doi: 10.1021/acsenergylett.3c02509
[66] Luo B, Li H, Qi H Y, et al. Effect of crystal morphology of ultrahigh-nickel cathode materials on high temperature electrochemical stability of lithium ion batteries. J Energy Chem, 2024, 88: 327 doi: 10.1016/j.jechem.2023.09.043
[67] Hamam I, Omessi R, Ball M, et al. Is aluminium useful in NiMn cathode systems: A study of the effectiveness of Al in co-free, Ni-rich positive electrode materials for Li-ion batteries. J Electrochem Soc, 2024, 171(6): 060515 doi: 10.1149/1945-7111/ad4e73
[68] Xiao W, Wang J L, Yi Z C, et al. Dual modification of LiNi0.83Co0.11Mn0.06O2 cathode materials by K+ doping and Li3PO4 coating for lithium ions batteries. Rare Met, 2024, 43(7): 3007
[69] Shen Y B, Yao X J, Zhang J H, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy, 2022, 94: 106900 doi: 10.1016/j.nanoen.2021.106900
[70] Mao G Q, Yang Y, Jiao W, et al. Alkali metal Na+ doped LiNi0.8Co0.1Mn0.1O2 cathode material with a stable structure and high performance for lithium-ion batteries. J Mater Sci, 2022, 57(42): 19892
[71] 陈彦恒, 田小龙. 三元材料LiNi0.7Co0.15Mn0.15O2的制备及Ca2+掺杂改性. 材料与冶金学报, 2023, 22(6):566 Chen Y H, Tian X L. Preparation and Ca2+ doping modification of ternary LiNi0.7Co0.15Mn0.15O2. J Mater Metall, 2023, 22(6): 566
[72] Li Q, Wu K, Chen M M, et al. Designing high-voltage and high-rate Li1− xNa xCoO2 by enlarging Li layer spacing. Electrochim Acta, 2018, 273: 145 doi: 10.1016/j.electacta.2018.04.043
[73] Liu J Q, Jiao W, Wang X, et al. Uniformly sodium ions doped LiNi0.84Co0.11Mn0.05O2 cathode material with high performance for lithium-ion batteries. Ceram Int, 2023, 49(9): 13953
[74] Kim S B, Kim H, Park D H, et al. Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions. J Power Sources, 2021, 506: 230219 doi: 10.1016/j.jpowsour.2021.230219
[75] Fang L L, Wang M, Zhou Q H, et al. Suppressing cation mixing and improving stability by F doping in cathode material LiNiO2 for Li-ion batteries: First-principles study. Colloids Surf A, 2020, 600: 124940 doi: 10.1016/j.colsurfa.2020.124940
[76] Zhao Z Y, Huang B, Wang M, et al. Facile synthesis of fluorine doped single crystal Ni-rich cathode material for lithium-ion batteries. Solid State Ionics, 2019, 342: 115065 doi: 10.1016/j.ssi.2019.115065
[77] Kim W K, Han D W, Ryu W H, et al. Effects of Cl doping on the structural and electrochemical properties of high voltage LiMn1.5Ni0.5O4 cathode materials for Li-ion batteries. J Alloys Compd, 2014, 592: 48
[78] Kong F T, Liang C P, Longo R C, et al. Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials. Chem Mater, 2016, 28(19): 6942 doi: 10.1021/acs.chemmater.6b02627
[79] Liu J F, Yang Z H, Liu Q Q, et al. Heightening the long cycling stability and reducing oxygen loss of Li-rich cathode materials by Mo–F co-doping for half/full lithium-ion batteries. Ceram Int, 2023, 49(4): 6580 doi: 10.1016/j.ceramint.2022.10.227
[80] Yue P, Wang Z X, Li X H, et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta, 2013, 95: 112
[81] Zhou Y, Zhang H W, Wang Y L, et al. Relieving stress concentration through anion-cation codoping toward highly stable nickel-rich cathode. ACS Nano, 2023, 17(20): 20621 doi: 10.1021/acsnano.3c07655
[82] Peng Z D, Yan Q M, Du K, et al. Enhancing the electrochemical properties of LiNi0.92Co0.05Mn0.03O2 cathode material via co-doping aluminium and fluorine for high-energy lithium-ion batteries. Ionics, 2023, 29(8): 3013
[83] Nisar U, Muralidharan N, Essehli R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater, 2021, 38: 309 doi: 10.1016/j.ensm.2021.03.015
[84] 周园, 潘稳丞, 马路祥, 等. 包覆技术在锂离子电池正极材料中的应用及挑战. 中国粉体技术, 2025, 31(1):74 Zhou Y, Pan W C, Ma L X, et al. Application and challenges of coating technology in cathode materials of lithiumion batteries. China Powder Sci Technol, 2025, 31(1): 74
[85] 杨溢, 何亚鹏, 张盼盼, 等. 锂离子电池富锂正极材料的包覆改性研究进展. 工程科学学报, 2022, 44(3):367 Yang Y, He Y P, Zhang P P, et al. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries. Chin J Eng, 2022, 44(3): 367
[86] 刘忠. 高镍三元材料的高压稳定性研究进展. 兵器材料科学与工程, 2024, 47(5):167 Liu Z. Research progress on high pressure stability of high nickel ternary materials. Ordnance Mater Sci Eng, 2024, 47(5): 167
[87] Gao T T, Tian P, Xu Q J, et al. Coating effect of various-phase alumina nanoparticles on NCM811 cathode for enhancing electrochemical performance of lithium-ion batteries. ACS Appl Energy Mater, 2024, 7(9): 3904 doi: 10.1021/acsaem.4c00272
[88] Lai Y Q, Xu M, Zhang Z A, et al. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. J Power Sources, 2016, 309: 20
[89] Zhao S Y, Zhu Y T, Qian Y C, et al. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater Lett, 2020, 265: 127418
[90] Ma F, Wu Y H, Wei G Y, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J Solid State Electrochem, 2019, 23(7): 2213
[91] Loghavi M M, Mohammadi-Manesh H, Eqra R. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem, 2019, 23(8): 2569
[92] Tao T, Chen C, Yao Y B, et al. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceram Int, 2017, 43(17): 15173
[93] Lee S H, Park G J, Sim S J, et al. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating. J Alloys Compd, 2019, 791: 193
[94] Li G R, Feng X, Ding Y, et al. AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta, 2012, 78: 308
[95] Lee S H, Yoon C S, Amine K, et al. Improvement of long-term cycling performance of Li [Ni0.8Co0.15Al0.05] O2 by AlF3 coating. J Power Sources, 2013, 234: 201
[96] Liu W M, Tang X, Qin M L, et al. FeF3-coated LiNi0.8Co0.15Al0.05O2 cathode materials with improved electrochemical properties. Mater Lett, 2016, 185: 96
[97] Zhao T L, Li L, Chen R J, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15: 164 doi: 10.1016/j.nanoen.2015.04.013
[98] Chu Y Q, Mu Y B, Zou L F, et al. Thermodynamically stable dual-modified LiF&FeF3 layer empowering Ni-rich cathodes with superior cyclabilities. Adv Mater, 2023, 35(21): 2212308 doi: 10.1002/adma.202212308
[99] Wang T, Wang H L, Hong M Z, et al. Outstanding enhancements in stability of LiNi0.8Mn0.1Co0.1O2 cathode by AlPO4/ACB double coating: Insights into surface structure and chemistry. Appl Surf Sci, 2022, 574: 151663
[100] Zha G J, Luo Y P, Hu N G, et al. Surface modification of the LiNi0.8Co0.1Mn0.1O2 cathode material by coating with FePO4 with a yolk-shell structure for improved electrochemical performance. ACS Appl Mater Interfaces, 2020, 12(32): 36046
[101] Song H G, Park K S, Park Y J. The effects of LaPO4 coating on the electrochemical properties of Li [Ni0.5Co0.2Mn0.3] O2 cathode material. Solid State Ionics, 2012, 225: 532
[102] Yan P F, Zheng J M, Liu J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy, 2018, 3(7): 600 doi: 10.1038/s41560-018-0191-3
[103] Abebe E B, Yang C C, Wu S H, et al. Surface modification with Li3PO4 enhances the electrochemical performance of LiNi0.9Co0.05Mn0.05O2 cathode materials for Li-Ion batteries. J Alloys Compd, 2023, 947: 169455
[104] Sun Y J, Wang C H, Huang W J, et al. One-step calcination synthesis of bulk-doped surface-modified Ni-rich cathodes with superlattice for long-cycling Li-ion batteries. Angew Chem Int Ed, 2023, 62(20): e202300962 doi: 10.1002/anie.202300962
[105] Xiong F, Chen Z X, Huang C, et al. Near-equilibrium control of Li2TiO3 nanoscale layer coated on LiNi0.8Co0.1Mn0.1O2 cathode materials for enhanced electrochemical performance. Inorg Chem, 2019, 58(22): 15498
[106] Liu W, Li X F, Hao Y C, et al. Ionic conductive interface boosting high performance LiNi0.8Co0.1Mn0.1O2 for lithium ion batteries. ACS Appl Energy Mater, 2020, 3(4): 3242
[107] Jeyakumar J, Wu Y S, Wu S-H, et al. Surface-modified quaternary layered Ni-rich cathode materials by Li2ZrO3 for improved electrochemical performance for high-power Li-ion batteries. ACS Appl Energy Mater, 2022, 5(4): 4796 doi: 10.1021/acsaem.2c00224
[108] Zhang H W, Zhang X Y, Zeng T Y, et al. Conversion of residual lithium into fast ionic conductor coating to achieve one-step double modification strategy in LiNi0.8Co0.15Al0.05O2. J Alloys Compd, 2023, 931: 167638
[109] Ran Q W, Zhao H Y, Hu Y Z, et al. Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage. ACS Appl Mater Interfaces, 2020, 12(8): 9268
[110] Huang X, Zhu W C, Yao J Y, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J Mater Chem A, 2020, 8(34): 17429 doi: 10.1039/D0TA00924E
[111] Bong W S K, Shiota A, Miwa T, et al. Effect of thickness and uniformity of LiNbO3-coated layer on LiNi0.5Co0.2Mn0.3O2 cathode material on enhancement of cycle performance of full-cell sulfide-based all-solid-state batteries. J Power Sources, 2023, 577: 233259
[112] 刘雷斌, 张淑娴, 刘炫漓, 等. 微量石墨烯包覆对LiNi0.8Co0.1Mn0.1O2电化学性能的影响. 电池工业, 2024, 28(2):72 Liu L B, Zhang S X, Liu X L, et al. Effect of trace graphene coating on the electrochemical performance of LiNi0.8Co0.1Mn0.1O2. Chin Battery Ind, 2024, 28(2): 72
[113] Liu Z H, Wang Z, Lu T Z, et al. Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating. J Alloys Compd, 2018, 763: 701
[114] Tian X H, Zhu Y B, Tang Z H, et al. Ni-rich LiNi0.6Co0.2Mn0.2O2 nanoparticles enwrapped by a 3D graphene aerogel network as a high-performance cathode material for Li-ion batteries. Ceram Int, 2019, 45(17): 22233
[115] Zhang J F, He H M, Wang X, et al. A new modification strategy for improving the electrochemical performance of high-nickel cathode material: V2O5 particles anchored on rGO sheets as a dual coating layer. Appl Surf Sci, 2022, 589: 152878 doi: 10.1016/j.apsusc.2022.152878
[116] Wang T, Wang W, Zhu D, et al. Improvement of the overall performances of LiMn2O4 via surface-modification by polypyrrole. Mater Res Bull, 2015, 71: 91 doi: 10.1016/j.materresbull.2015.06.051
[117] Zhang P X, Zhang L, Ren X Z, et al. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2–PPy composites cathode materials for lithium-ion battery. Synth Met, 2011, 161(11-12): 1092 doi: 10.1016/j.synthmet.2011.03.021
[118] Ju S H, Kang I S, Lee Y S, et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl Mater Interfaces, 2014, 6(4): 2546
[119] Cao Y B, Qi X Y, Hu K H, et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces, 2018, 10(21): 18270 doi: 10.1021/acsami.8b02396
[120] Mao G Q, Yu W J, Zhou Q J, et al. Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Appl Surf Sci, 2020, 531: 147245 doi: 10.1016/j.apsusc.2020.147245
[121] Wang K, Mao Q Z, Lu X X, et al. Fluorides coated Ni-rich cathode materials with enhanced surficial chemical stability for advanced lithium-ion battery. Sustainable Mater Technol, 2023, 38: e00713 doi: 10.1016/j.susmat.2023.e00713
[122] Liu Y, Tang L B, Wei H X, et al. Enhancement on structural stability of Ni-rich cathode materials by in situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy, 2019, 65: 104043 doi: 10.1016/j.nanoen.2019.104043
[123] Kim K E, Jeong J, Lee Y, et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries. J Power Sources, 2024, 601: 234300
[124] Wang H Q, Chu Y Q, Pan Q C, et al. Enhanced interfacial reaction interface stability of Ni-rich cathode materials by fabricating dual-modified layer coating for lithium-ion batteries. Electrochim Acta, 2021, 366: 137476 doi: 10.1016/j.electacta.2020.137476
[125] Xiong X H, Wang Z X, Guo H J, et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 ℃. J Mater Chem A, 2013, 1(4): 1284
[126] Zhang F L, Zhou X A, Fu X L, et al. Which is the winner between the single-crystalline and polycrystalline LiNi0.80Co0.15Al0.05O2 cathode in the lithium-ion battery? Mater Today Energy, 2021, 22: 100873 doi: 10.1016/j.mtener.2021.100873
[127] Shen J X, Zhang B, Huang W Y, et al. Achieving thermodynamic stability of single-crystal co-free Ni-rich cathode material for high voltage lithium-ion batteries. Adv Funct Mater, 2023, 33(23): 2300081 doi: 10.1002/adfm.202300081
[128] Shen J X, Zhang B, Hao C W, et al. Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich co-free cathodes. Green Energy Environ, 2024, 9(6): 1045 doi: 10.1016/j.gee.2022.11.006
[129] Li B Q, Zhang F L, Li C Y, et al. Insights into the effects of coating and single crystallization on the rate performance and cycle life of LiNi0.9Mn0.1O2 cathode. J Colloid Interface Sci, 2024, 672: 776
[130] Yoo Y W, Kang C Y, Kim H K, et al. Enhanced structure/interfacial properties of single-crystal Ni-rich LiNi0.92Co0.04Mn0.04O2 cathodes synthesized via LiCl–NaCl molten-salt method. Energy Environ Mater, 2025, 8(1): e12778
[131] Jing Z W, Wang S N, Fu Q, et al. Architecting “Li-rich Ni-rich” core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Mater, 2023, 59: 102775 doi: 10.1016/j.ensm.2023.102775
[132] Feng Z J, Liu Y L, Qian R C, et al. Fabricating a thin gradient surface layer to enhance the cycle stability of Ni-rich cathode materials. J Alloys Compd, 2022, 893: 162162 doi: 10.1016/j.jallcom.2021.162162
[133] Kim U H, Kim J H, Hwang J Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today, 2019, 23: 26 doi: 10.1016/j.mattod.2018.12.004
[134] Chen H, Yuan H H, Dai Z Q, et al. Surface gradient Ni-rich cathode for Li-ion batteries. Adv Mater, 2024, 36(33): 2401052 doi: 10.1002/adma.202401052