颗粒尺寸效应对纳米流体导热系数、粘度系数和导电系数的影响研究综述

Effect of particle size on the thermal conductivity, viscosity, and electrical conductivity of nanofluids: A review

  • 摘要: 纳米流体作为一种新兴的传热传质介质,在工程和生物医学领域展现出广泛的应用潜力,其物性参数的调控是研究的关键问题. 本文结合实验数据、理论模型和经验关联式,系统分析了颗粒尺寸对纳米流体有效导热系数、粘度系数和导电系数的影响,并探讨了颗粒体积分数和温度等因素的作用机制. 研究表明,不同物性参数对颗粒尺寸的响应存在显著差异。导热系数受到界面散射、界面热阻和布朗运动等因素的共同影响,因此存在一个最优颗粒尺寸以实现最大化的传热效率;粘度系数由于颗粒界面效应的复杂性,其随颗粒尺寸变化的趋势尚无统一结论;而导电系数则随着颗粒尺寸的减小显著增加,这主要是由于电双层重叠效应的增强. 此外,本文对不同颗粒尺寸条件下的部分实验数据、经典理论模型和经验关联式进行了对比分析. 结果表明,传统理论模型在描述纳米流体物性变化方面存在一定局限,而相较于理论公式,经验关联式能够更准确地拟合实验结果,并将微观尺度上颗粒尺寸的变化有效地反映到宏观物性参数的模型中. 通过系统分析颗粒尺寸对纳米流体物性的微观调控机制,本研究为纳米流体在传热传质及其他应用场景中的优化设计和数值模拟提供了重要参考.

     

    Abstract: Nanofluids, as an emerging heat and mass transfer medium, exhibit broad application potential in engineering and biomedical fields. The regulation of effective physical properties is a key research issue. The study integrates experimental data, theoretical models, and empirical correlations to systematically examine the impact of particle size on the effective thermal conductivity, viscosity, and electrical conductivity of nanofluids. Additionally, it investigates the influence of particle volume fraction and temperature on these properties. Research illustrates that different effective physical properties respond significantly differently to particle size. The effective thermal conductivity is influenced by a combination of factors including interface scattering, interfacial thermal resistance, and Brownian motion, exhibiting an optimal particle size. The viscosity shows some discrepancies in its trend with particle size due to the complexity of particle interface effect.

     

/

返回文章
返回