基于预瞄曲率信息与状态协调的预测时域自适应NMPC

Adaptive Prediction Horizon NMPC with Previewed Curvature Information and State Coordination

  • 摘要: 在整体式车辆稳定性轨迹跟踪控制架构的基础之上,设计了一种引入预瞄曲率信息的自适应预测时域非线性模型预测控制(NMPC)。基于预瞄的参考路径曲率点列指导控制维度变化,提升控制器对于路径曲率的动态响应能力;进一步地,引入状态协调优化机制,使控制器显示耦合至上一控制周期的车辆状态空间,有效避免预测时域变化造成的多步优化问题解耦效应,抑制因控制输入突变对轨迹跟踪控制任务的影响。结合两种优化方法,有效改善固定预测时域策略在高曲率轨迹跟踪中因累计误差造成的跟踪精度下降问题。最后,基于MATLAB/Simulink-CarSim联合仿真平台对算法进行了验证。经计算,高速单移线工况下,该方法在侧向偏差均值/峰值、纵向偏差均值/峰值、航向偏差均值/峰值指标中,相较于固定预测时域NMPC同比降低36.17%/15.25%、11.55%/38.58%、6.13%/25.27%;高速双移线工况下,同比降低30.28%/29.77%、25.07%/3.85%、11.02%/2.68%。此外,在高速低附着工况中,该方法仍能保证良好的控制精度及侧向稳定性,其峰值侧向偏差为0.2017m、峰值纵向偏差为0.9744 kmh-1、峰值航向偏差为1.1936°、峰值质心侧偏角为1.9074°。

     

    Abstract: Building upon an integrated vehicle stability and trajectory tracking control framework, this study proposes an adaptive prediction horizon nonlinear model predictive control (NMPC) strategy incorporating previewed curvature information. By leveraging a preview-based reference path curvature point sequence to dynamically adjust control parameters, the proposed method enhances the controller’s responsiveness to path curvature variations and mitigates tracking accuracy degradation caused by accumulated errors in fixed-horizon strategies during high-curvature trajectory tracking. A state coordination optimization mechanism is introduced to explicitly couple the controller with the vehicle state space from the previous control cycle, effectively suppressing decoupling effects in multi-step optimization problems induced by prediction horizon variations and minimizing control input discontinuities. Validation via MATLAB/Simulink-CarSim co-simulation demonstrates significant improvements: in high-speed single lane-change scenarios, the method reduces average/peak lateral deviations by 36.17%/15.25%, average/peak longitudinal deviations by 11.55%/38.58%, and average/peak heading deviations by 6.13%/25.27% compared to fixed-horizon NMPC; in high-speed double lane-change scenarios, it achieves reductions of 30.28%/29.77% (lateral), 25.07%/3.85% (longitudinal), and 11.02%/32.68% (heading). Under high-speed low-adhesion conditions (μ=0.4), the method maintains robust precision and stability with peak lateral deviation at 0.2017 m, peak longitudinal deviation at 0.9744 km/h, peak heading deviation at 1.1936°, and peak centroid sideslip angle at 1.9074°。

     

/

返回文章
返回