结合三维重建与机器学习预测上颌中切牙宽度的研究

Research on Predicting Maxillary Central Incisor Width by Combining 3D Reconstruction and Machine Learning

  • 摘要: 传统人类学测量在微笑美学临床实践中存在主观误差问题。本研究提出了一种包含三维面部标志点自动检测、双目三维重建、WGAN-GP数据增强、回归模型分析的上颌中切牙宽度智能预测技术体系。通过200例三维面部扫描数据,建立了包含ICW、IAW等5项关键解剖参数的特征空间,创新性地将Wasserstein生成对抗网络与梯度惩罚机制引入,有效解决了小样本条件下的模型泛化难题。系统比较了MLP、GBR等五种回归算法的性能差异,其中梯度提升回归(GBR)在测试集上达到0.9446的决定系数,预测误差(RMSE=0.1238 mm)较传统方法降低73.4%,而多层感知器(MLP)展现出最佳的泛化稳定性(测试集R2=0.9691)。本方法通过三维特征空间映射与集成学习策略,实现了亚毫米级预测精度(0.092-0.171 mm),建议临床采用MLP-GBR混合模型架构,为数字化微笑设计提供了可解释性强、临床适配度高的智能决策模型。

     

    Abstract: Traditional anthropometric measurements in clinical smile aesthetics practice are prone to subjective errors. This study proposes an intelligent prediction system for maxillary central incisor width, integrating automated 3D facial landmark detection, binocular 3D reconstruction, WGAN-GP data augmentation, and regression model analysis. Using 200 cases of 3D facial scan data, we established a feature space incorporating five key anatomical parameters including ICW and IAW. The innovative integration of Wasserstein Generative Adversarial Networks with gradient penalty mechanism effectively addressed model generalization challenges under small-sample conditions.A systematic comparison of five regression algorithms revealed that Gradient Boosting Regression (GBR) achieved a coefficient of determination (R2) of 0.9446 on the test set, with prediction error (RMSE=0.1238 mm) reduced by 73.4% compared to traditional methods, while Multilayer Perceptron (MLP) demonstrated superior generalization stability (test set R2=0.9691). Our method achieves submillimeter-level prediction accuracy (0.092-0.171 mm) through 3D feature space mapping and ensemble learning strategies. We recommend the clinical adoption of the MLP-GBR hybrid model architecture, which provides an intelligent decision-making model with strong interpretability and clinical adaptability for digital smile design.

     

/

返回文章
返回