YANG Xiaoming, XIE Tiejun, XIONG Liqing, DAI Mingan, ZHU Xiangrong. A Feed Forward Network Mode with Prior Knowledge and Its Application to Forecasting Ocean-water Corrosion[J]. Chinese Journal of Engineering, 2000, 22(3): 242-244. DOI: 10.13374/j.issn1001-053x.2000.03.014
Citation: YANG Xiaoming, XIE Tiejun, XIONG Liqing, DAI Mingan, ZHU Xiangrong. A Feed Forward Network Mode with Prior Knowledge and Its Application to Forecasting Ocean-water Corrosion[J]. Chinese Journal of Engineering, 2000, 22(3): 242-244. DOI: 10.13374/j.issn1001-053x.2000.03.014

A Feed Forward Network Mode with Prior Knowledge and Its Application to Forecasting Ocean-water Corrosion

More Information
  • Received Date: April 26, 1999
  • Available Online: August 26, 2021
  • The relatonship between material corrosion and ocean envirnmental factors is studied.A feed forward network incorporated with prior knowledge is used to model the mapping between the corrosion rate and the environmental factors.The calculation results show that the model can give a better prediction of the corrosion rate than those given by BP model.
  • Related Articles

    [1]ELHAM Elxat, MENG Yu, BAI Guoxing, GU Qing, WANG Guodong, CHANG Xinrui, HUANG JianXiu, ZHENG Yan. Path tracking for car-like robots based on feed-forward nonlinear model predictive control[J]. Chinese Journal of Engineering, 2025, 47(1): 101-112. DOI: 10.13374/j.issn2095-9389.2024.04.29.008
    [2]YU Wei, SUN Guang-jie. Forward slip theoretical model and simulation for variable gauge rolling of TRB sheet[J]. Chinese Journal of Engineering, 2014, 36(2): 241-245. DOI: 10.13374/j.issn1001-053x.2014.02.016
    [3]ZHANG Qing-dong, DAI Jie-tao, LI Bo, JIN Guo, GU Hua-zhong. Flatness feed-forward control based on measured values of incoming strip profile[J]. Chinese Journal of Engineering, 2009, 31(7): 917-922. DOI: 10.13374/j.issn1001-053x.2009.07.026
    [4]FAN Yumei, DAN Ping, AI Dongmei, ZHANG Dezheng. Knowledge discovery based on structural modeling[J]. Chinese Journal of Engineering, 2008, 30(7): 832-836. DOI: 10.13374/j.issn1001-053x.2008.07.049
    [5]CAI Weimin, WU Dekun, GAO Junshan. Improved model of knowledge diffusion in corporation[J]. Chinese Journal of Engineering, 2006, 28(5): 505-508. DOI: 10.13374/j.issn1001-053x.2006.05.042
    [6]YOU Fucheng, MA Wenxiu, YANG Bingru. Application of Multi-agent Technologies to the Model Design of Knowledge Discovery in Database Based on the Double-bases Cooperation Mechanism[J]. Chinese Journal of Engineering, 2003, 25(1): 95-98. DOI: 10.13374/j.issn1001-053x.2003.01.026
    [7]LUAN Yanbing, LI Shunhua, QU Zuyu. Establishment of an Atmospheric Corrosive Knowledge Base for Carbon Steel and Low Alloy Steel Based on ANN[J]. Chinese Journal of Engineering, 2002, 24(5): 571-573. DOI: 10.13374/j.issn1001-053x.2002.05.024
    [8]Yang Xiaoming, Chen Mingwen, Zhang Yu, Dai Mingan, Zhu Xiangrong. Analysis and Forcasting for Main Factors of Corrosion to Metals in Ocean Enviroment[J]. Chinese Journal of Engineering, 1999, 21(2): 185-187. DOI: 10.13374/j.issn1001-053x.1999.02.053
    [9]Jiang Jianhua, Ma Yanwei, Wang Xianjin. Prediction of Properties of IF Steel Using Neural Network Model[J]. Chinese Journal of Engineering, 1997, 19(5): 467-470. DOI: 10.13374/j.issn1001-053x.1997.05.011
    [10]Li Yinglong, Tong Guangxu. Building Empirical Mining Knowledge Base Using Neural Network[J]. Chinese Journal of Engineering, 1994, 16(6): 512-516. DOI: 10.13374/j.issn1001-053x.1994.06.002
  • Cited by

    Periodical cited type(7)

    1. 赵鸿波,王凤民,张福,迟臣焕,周振兴,张建良. 2600 m~3高炉炉缸侵蚀特征数值模拟. 中国冶金. 2023(06): 87-94 .
    2. 吕昌贺,常李,周海华,徐震,张建良. 沙钢3号高炉石墨碳护炉方式下的稳产措施. 炼铁. 2023(02): 5-8 .
    3. 陈立军,曲迎霞,孙国伟. 铁钢界面铁水温降碳析出利用研究. 宝钢技术. 2021(04): 14-18 .
    4. 谢仁金. 泉州闽光高炉铁水粘度影响因素的分析. 天津冶金. 2020(06): 14-18+21 .
    5. 焦克新,张建良,刘征建,王广伟. 高炉炉缸含钛保护层物相及TiC_(0.3)N_(0.7)形成机理. 工程科学学报. 2019(02): 190-198 . 本站查看
    6. 刘增强,张建良,焦克新,周云花,但家云. 高炉炉缸Ti(C, N)保护层及死料柱行为研究. 炼铁. 2019(03): 22-25 .
    7. 祝和利,马恒保,张建良,李昕,赵永安. 碳复合砖炉缸无“象脚状”侵蚀现象探究. 炼铁. 2019(05): 1-5 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return