Dephosphorization of high-level phosphorus iron ore by gas-based reduction and melt separation
-
-
Abstract
The traditional methods of mineral and metallurgical processes are very difficult in treating the high-level phosphorus iron ore from west Hubei Province of China to meet the requirements of the iron and steel industry. A new technical route, gas-based reduction and electrical furnace melt separation, was proposed and demonstrated. Based on the mineral phases, thermodynamic simulation (performed with HSC) was carried out first, and then gas-based reduction experiment and electrical furnace melt separation experiment were conducted. Gas-based reduction results agree with the numerical simulation. The phosphorus content decreases from 1.28% in the ore sample to 0.27% in the final metal sample by using CO reduction and melt separation; and it decreases from 1.27% in the ore sample to 0.33% in the final metal sample by using H2 reduction. The melt separation SEM and EDS analyses of metal samples after melt separation show P exists as impurities. These impurities can be removed by refining methods in the melting stage to meet the requirements of steelmaking.
-
-