TANG Hai-yan, YANG Mao-sheng, MENG Wen-jia, LI Jing-she. Hot deformation behavior of Cr-Co-Mo-Ni gear steel and finite element simulation of the die forging process[J]. Chinese Journal of Engineering, 2016, 38(1): 77-86. DOI: 10.13374/j.issn2095-9389.2016.01.011
Citation: TANG Hai-yan, YANG Mao-sheng, MENG Wen-jia, LI Jing-she. Hot deformation behavior of Cr-Co-Mo-Ni gear steel and finite element simulation of the die forging process[J]. Chinese Journal of Engineering, 2016, 38(1): 77-86. DOI: 10.13374/j.issn2095-9389.2016.01.011

Hot deformation behavior of Cr-Co-Mo-Ni gear steel and finite element simulation of the die forging process

More Information
  • Received Date: June 17, 2015
  • Available Online: July 04, 2021
  • Large strain isothermal compression tests were carried out on a Gleeble-3800 thermal simulator to study the high temperature deformation behavior of Cr-Co-Mo-Ni gear steel. The constitutive equation and hot processing map of the steel were established based on experiment data. The results show that the flow stress decreases with increasing temperature,but increases with increasing strain rate. The flow stress can be described by the constitutive equation in a hyperbolic sine function and the averaged value of activation energy is 487.21 kJ·mol-1. The proper hot working regions shown by the hot processing map are the temperature of 1000-1100℃ and the strain rate of 0.1-1 s-1. In addition,the forging processes were simulated by finite element method based on the experiment,the effects of initial forging temperature and passes on the temperature and strain rate of forgings were analyzed,and the proper forging process parameters were obtained which are the initial forging temperature of 1000-1100℃ and the forging passes of 15.
  • Related Articles

    [1]SU Zhen-ning, SHAO Long-tan. Three-dimensional slope stability based on the finite element limit equilibrium method[J]. Chinese Journal of Engineering, 2022, 44(12): 2048-2056. DOI: 10.13374/j.issn2095-9389.2021.04.29.002
    [2]DI Quan-kang, WANG Fu-ming, WANG Xiao-chen, YANG Zi-sen, DENG Su-huai, ZHENG Fu-yin. Finite element simulation of the temperature curve of wire rods during the whole process of rolling[J]. Chinese Journal of Engineering, 2016, 38(2): 276-282. DOI: 10.13374/j.issn2095-9389.2016.02.018
    [3]WANG Xiao-chen, YANG Quan, LIU Rui-jun, MENG Jie, GUO De-fu, SUN You-zhao. Temperature field analysis of intermediate slabs in the hot coil box based on ANSYS finite element method[J]. Chinese Journal of Engineering, 2013, 35(4): 454-458. DOI: 10.13374/j.issn1001-053x.2013.04.007
    [4]CHANG Yun-he, ZHANG Jia-quan, QIAN Hong-zhi, HAN Zhan-guang, CENG Zhi. Development and application of a dynamic secondary cooling control model for beam blanks based on finite element method[J]. Chinese Journal of Engineering, 2011, 33(4): 418-422. DOI: 10.13374/j.issn1001-053x.2011.04.012
    [5]CHEN Zhanghua, LIU Hongbo, MA Wenjiang. Stability of the enhanced assumed strain finite element method[J]. Chinese Journal of Engineering, 2005, 27(5): 556-559. DOI: 10.13374/j.issn1001-053x.2005.05.042
    [6]LI Guang, LI Huade. Simulation of the Electromagnetic Field in Steel Slabs Based on the Finite Element Method[J]. Chinese Journal of Engineering, 2004, 26(1): 95-98. DOI: 10.13374/j.issn1001-053x.2004.01.025
    [7]SU Lan, WANG Xianjin, TANG Di, FAN Guangyao. Analysis of T-shaped Tube Hydroforming by Finite Element Method[J]. Chinese Journal of Engineering, 2002, 24(5): 537-540. DOI: 10.13374/j.issn1001-053x.2002.05.014
    [8]Cheng Chunfang, Yang Song, Qian Rengen, Liu Li. Analysis of the Stress of Giant Equipments Boom and Long Arm by Using Finite Element Method[J]. Chinese Journal of Engineering, 1996, 18(1): 92-95. DOI: 10.13374/j.issn1001-053x.1996.01.021
    [9]Zhang Shaojun, Li Mouwei. Analysis of Large Tie Rod with Finite Element Method[J]. Chinese Journal of Engineering, 1994, 16(S2): 14-18. DOI: 10.13374/j.issn1001-053x.1994.s2.004
    [10]Shuo Zhuo, He Yuxin. Improvement on the Rigid-Plastic Finite Element Method and Its Application in Rolling Engineering[J]. Chinese Journal of Engineering, 1987, 9(4): 57-65. DOI: 10.13374/j.issn1001-053x.1987.04.009
  • Cited by

    Periodical cited type(6)

    1. 杨源远,王栋,黄利,刘宝志. HiB与CGO取向硅钢的对比及其常化退火工艺. 金属热处理. 2024(01): 228-234 .
    2. 董丽丽,黄禄璐,谢丽,刘宝志. 高磁感取向硅钢组织、织构演变分析. 包钢科技. 2024(03): 61-66 .
    3. 董丽丽,黄禄璐,卢晓禹,黄利,刘宝志. 高磁感取向硅钢的脱碳退火工艺. 金属热处理. 2023(03): 124-128 .
    4. 张慧敏,张程远,吴忠旺,金自力,任慧平,王朝毅. 富铜相对Fe-3%Si-Cu合金再结晶行为的影响. 金属热处理. 2022(05): 76-81 .
    5. 杨平,李洋,顾新福,李观军,恽建刚. 低温加热渗氮型取向硅钢二次晶粒取向度下降成因分析. 电工钢. 2022(03): 1-11 .
    6. 丁昂,郝洁,黄敬晖,张延松,黄辉,李孟勇. 厚度对纳米晶软磁合金带材自由面结构的影响. 稀有金属. 2021(08): 936-943 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (308) PDF downloads (21) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return