Citation: | JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, LIU Yan-xiang, LIANG Li-sheng, JIA Guo-dong. Analysis of the phase of the solid iron layer in blast furnace hearth[J]. Chinese Journal of Engineering, 2017, 39(6): 838-845. DOI: 10.13374/j.issn2095-9389.2017.06.004 |
[1] |
Liu Z J, Zhang J L, Yang T J. Low carbon operation of superlarge blast furnaces in China. ISIJ Int, 2015, 55(6):1146
|
[2] |
Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2):143
|
[3] |
Li Y W, Li Y W, Sang S B, et al. Preparation of ceramic-bonded carbon block for blast furnace. Metall Mater Trans A, 2014, 45(1):477
|
[4] |
Liu Z J, Zhang J L, Zuo H B, et al. Recent progress on long service life design of Chinese blast furnace hearth. ISIJ Int, 2012, 52(10):1713
|
[8] |
Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10):1139
|
[9] |
Zhao H B, Cheng S S, Zhao M G. Analysis of all-carbon brick bottom and ceramic cup synthetic hearth bottom. J Iron Steel Res Int, 2007, 14(2):6
|
[10] |
Zhang Y, Deshpande R, Huang D, et al. A methodology for blast furnace hearth inner profile analysis. J Heat Transfer, 2007, 129(12):1729
|
[11] |
Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2ed campaign). ISIJ Int, 2009, 49(4):470
|
[12] |
Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3):321
|
[13] |
Komiyama K M, Guo B Y, Zughbi H, et al. Numerical analysis of titanium compounds in blast furnace hearth during titania addition. Steel Res Int, 2015, 86(6):592
|
[15] |
Jiao K X, Zhang J L, Liu Z J, et al. Formation mechanism of the graphite-rich protective layer in blast furnace hearth. Int J Miner Metall Mater, 2016, 23(1):16
|
[16] |
Zhu R L, Sun G J, Lin C C. Longevity technology research and practice of Baosteel No. 3 BF//Proceedings of 7th International Conference on the Science and Technology of Ironmaking. Cleveland, 2015:298
|
[18] |
Nakamoto M, Miyabayashi Y, Holappa L, et al. A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int, 2007, 47(10):1409
|
[19] |
Wu L S. Study on Some Phenomena of Slag in Steelmaking Process[Dissertation]. Sweden:KTH Royal Institute of Technology, 2011
|
[20] |
Takahira N. Influence of enthalpy changes on the temperature dependency of the viscosity of pure liquid metals. ISIJ Int, 2015, 55(10):2247
|
1. |
赵鸿波,王凤民,张福,迟臣焕,周振兴,张建良. 2600 m~3高炉炉缸侵蚀特征数值模拟. 中国冶金. 2023(06): 87-94 .
![]() | |
2. |
吕昌贺,常李,周海华,徐震,张建良. 沙钢3号高炉石墨碳护炉方式下的稳产措施. 炼铁. 2023(02): 5-8 .
![]() | |
3. |
陈立军,曲迎霞,孙国伟. 铁钢界面铁水温降碳析出利用研究. 宝钢技术. 2021(04): 14-18 .
![]() | |
4. |
谢仁金. 泉州闽光高炉铁水粘度影响因素的分析. 天津冶金. 2020(06): 14-18+21 .
![]() | |
5. |
焦克新,张建良,刘征建,王广伟. 高炉炉缸含钛保护层物相及TiC_(0.3)N_(0.7)形成机理. 工程科学学报. 2019(02): 190-198 .
![]() | |
6. |
刘增强,张建良,焦克新,周云花,但家云. 高炉炉缸Ti(C, N)保护层及死料柱行为研究. 炼铁. 2019(03): 22-25 .
![]() | |
7. |
祝和利,马恒保,张建良,李昕,赵永安. 碳复合砖炉缸无“象脚状”侵蚀现象探究. 炼铁. 2019(05): 1-5 .
![]() |