JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, LIU Yan-xiang, LIANG Li-sheng, JIA Guo-dong. Analysis of the phase of the solid iron layer in blast furnace hearth[J]. Chinese Journal of Engineering, 2017, 39(6): 838-845. DOI: 10.13374/j.issn2095-9389.2017.06.004
Citation: JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, LIU Yan-xiang, LIANG Li-sheng, JIA Guo-dong. Analysis of the phase of the solid iron layer in blast furnace hearth[J]. Chinese Journal of Engineering, 2017, 39(6): 838-845. DOI: 10.13374/j.issn2095-9389.2017.06.004

Analysis of the phase of the solid iron layer in blast furnace hearth

More Information
  • Received Date: August 09, 2016
  • The solidified iron layer in blast furnace (BF) hearth was estimated based on the blast furnace damage. The phase compositions of the solidified iron layer were studied using scanning electron microscope and energy dispersive spectrometer. The temperature and proportions of graphite precipitation were calculated by using the Thermol-calc software and the TCFE8 database. Finally, the formation of the solidified iron layer was examined. The results suggest that the solidified iron comprises iron and graphite. The temperature of the graphite precipitation is affected by the composition of the hot metal, and it is much higher than the solidification temperature of the hot metal. The proportions of precipitated graphite are affected by the C and Si in the hot metal, whereas the precipitated graphite increases the viscosity of the hot metal by 11.9%. The graphite precipitates at the interface with the Fe-refractory at lower temperature than that of the graphite saturation, which allows the C migration from the hot metal to the refractory interface.
  • [1]
    Liu Z J, Zhang J L, Yang T J. Low carbon operation of superlarge blast furnaces in China. ISIJ Int, 2015, 55(6):1146
    [2]
    Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2):143
    [3]
    Li Y W, Li Y W, Sang S B, et al. Preparation of ceramic-bonded carbon block for blast furnace. Metall Mater Trans A, 2014, 45(1):477
    [4]
    Liu Z J, Zhang J L, Zuo H B, et al. Recent progress on long service life design of Chinese blast furnace hearth. ISIJ Int, 2012, 52(10):1713
    [8]
    Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10):1139
    [9]
    Zhao H B, Cheng S S, Zhao M G. Analysis of all-carbon brick bottom and ceramic cup synthetic hearth bottom. J Iron Steel Res Int, 2007, 14(2):6
    [10]
    Zhang Y, Deshpande R, Huang D, et al. A methodology for blast furnace hearth inner profile analysis. J Heat Transfer, 2007, 129(12):1729
    [11]
    Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2ed campaign). ISIJ Int, 2009, 49(4):470
    [12]
    Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3):321
    [13]
    Komiyama K M, Guo B Y, Zughbi H, et al. Numerical analysis of titanium compounds in blast furnace hearth during titania addition. Steel Res Int, 2015, 86(6):592
    [15]
    Jiao K X, Zhang J L, Liu Z J, et al. Formation mechanism of the graphite-rich protective layer in blast furnace hearth. Int J Miner Metall Mater, 2016, 23(1):16
    [16]
    Zhu R L, Sun G J, Lin C C. Longevity technology research and practice of Baosteel No. 3 BF//Proceedings of 7th International Conference on the Science and Technology of Ironmaking. Cleveland, 2015:298
    [18]
    Nakamoto M, Miyabayashi Y, Holappa L, et al. A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int, 2007, 47(10):1409
    [19]
    Wu L S. Study on Some Phenomena of Slag in Steelmaking Process[Dissertation]. Sweden:KTH Royal Institute of Technology, 2011
    [20]
    Takahira N. Influence of enthalpy changes on the temperature dependency of the viscosity of pure liquid metals. ISIJ Int, 2015, 55(10):2247
  • Cited by

    Periodical cited type(7)

    1. 赵鸿波,王凤民,张福,迟臣焕,周振兴,张建良. 2600 m~3高炉炉缸侵蚀特征数值模拟. 中国冶金. 2023(06): 87-94 .
    2. 吕昌贺,常李,周海华,徐震,张建良. 沙钢3号高炉石墨碳护炉方式下的稳产措施. 炼铁. 2023(02): 5-8 .
    3. 陈立军,曲迎霞,孙国伟. 铁钢界面铁水温降碳析出利用研究. 宝钢技术. 2021(04): 14-18 .
    4. 谢仁金. 泉州闽光高炉铁水粘度影响因素的分析. 天津冶金. 2020(06): 14-18+21 .
    5. 焦克新,张建良,刘征建,王广伟. 高炉炉缸含钛保护层物相及TiC_(0.3)N_(0.7)形成机理. 工程科学学报. 2019(02): 190-198 . 本站查看
    6. 刘增强,张建良,焦克新,周云花,但家云. 高炉炉缸Ti(C, N)保护层及死料柱行为研究. 炼铁. 2019(03): 22-25 .
    7. 祝和利,马恒保,张建良,李昕,赵永安. 碳复合砖炉缸无“象脚状”侵蚀现象探究. 炼铁. 2019(05): 1-5 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (934) PDF downloads (45) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return