Citation: | PAN Xing-hao, CHU Mao-you, WANG Xing-ming, LIU Yu-yang, BAI Xue, GUI Tao, ZHANG Chao. Preparation of Te-based compound target for amorphous semiconductor thin film[J]. Chinese Journal of Engineering, 2019, 41(2): 224-229. DOI: 10.13374/j.issn2095-9389.2019.02.009 |
When a certain threshold switching voltage is applied to a semiconductor of Te-based compound in a high-impedance amorphous state, the semiconductor transits into a low-resistance state, and the resistance difference is more than five orders of magnitude. Therefore, TeAsGeSi material can be prepared as a threshold switch and used in the form of a thin film in a phase-change memory and other elements to improve the performance of such elements. There are few studies on the preparation of such targets, and the key technologies have been monopolized. In this study, the powder difference was taken as the basis to study the target material preparation process of this material in order to prepare a target with high density and uniform composition. Two kinds of TeAsGeSi alloy powders were prepared by vacuum melting under different cooling conditions: quenching and slow cooling. The X-ray diffraction (XRD) analysis shows that the powder prepared by rapid cooling is amorphous, while the powder prepared by slow cooling process is crystalline, and the main crystal phase is As 2GeTe4. The differential scanning calorimetry and thermogravimetry (DSC-TG) curves of the two powders shows that the powders begin to lose weight quickly at 400 ℃, and the slowly cooled powder melts at 350 ℃. As a result, the sintering temperature must not exceed 340 ℃. The TeAsGeSi alloy target was prepared by vacuum hot pressing. The two powders were incubated at 340 ℃ for 2 h and 20 MPa to prepare two targets. The target material prepared by the slowly cooled powder has a high density of 5. 46 g·cm-3, reaching 99. 5% of the theoretical density. The morphological characterization shows that the target has a smooth surface with few holes and uniform distribution of elements, and this target can produce high-performance thin films.
[1] |
林鸿溢. 非晶态半导体的进展. 材料导报, 1993(2): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB199302007.htm
Lin H Y. Progress of amorphous semiconductors. Mater Rev, 1993(2): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB199302007.htm
|
[2] |
尹琦璕, 陈冷. 相变存储器材料的研究进展和应用前景. 新材料产业, 2016(7): 56 doi: 10.3969/j.issn.1008-892X.2016.07.013
Yin Q X, Chen L. Research progress and application prospect of phase change memory materials. Adv Mater Ind, 2016(7): 56 doi: 10.3969/j.issn.1008-892X.2016.07.013
|
[3] |
Rao F, Ding K Y, Zhou Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 2017, 258(6369): 1423 http://www.ncbi.nlm.nih.gov/pubmed/29123020
|
[4] |
Shin S Y, Choi J M, Seo J, et al. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic threshold switches based on Ge-Se. Sci Rep, 2014, 4(6): 7099 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235286/
|
[5] |
Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21(20): 1450 doi: 10.1103/PhysRevLett.21.1450
|
[6] |
宋二龙, 兰林锋, 林振国, 等. 热压烧结靶材制备氧化铟锌薄膜晶体管. 物理化学学报, 2017, 33(10): 2092 doi: 10.3866/PKU.WHXB201705114
Song E L, Lan L F, Lin Z G, et al. Preparation of indium-zinc-oxide thin film transistors by hot-pressing sintering target. Acta Phys Chim Sin, 2017, 33(10): 2092 doi: 10.3866/PKU.WHXB201705114
|
[7] |
涂浩, 魏大圣, 周圣洁, 等. 冷却速度对Zn-5Al-0.1RE-xSi合金显微组织及耐蚀性能的影响. 工程科学学报, 2016, 38(8): 1132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608012.htm
Tu H, Wei D S, Zhou S J, et al. Effect of cooling rate on the microstructure and corrosion properties of Zn-5Al-0.1RE-xSi alloys. Chin J Eng, 2016, 38(8): 1132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608012.htm
|
[8] |
陈松, 耿永红, 王传军, 等. 磁控溅射用CoCrPt系靶材制备技术研究进展. 贵金属, 2013, 34(1): 74 doi: 10.3969/j.issn.1004-0676.2013.01.017
Chen S, Geng Y H, Wang C J, et al. Research progress of CoCrPt system targets fabrication. Precious Met, 2013, 34(1): 74 doi: 10.3969/j.issn.1004-0676.2013.01.017
|
[9] |
夏扬, 谢元锋, 吕宏, 等. 一种相变存储用Sb-Te-W相变靶材及其制备方法: 中国专利, 103898452B. 2017-03-15
Xia Y, Xie Y F, Lü H, et al. A Phase Change Memory Sb-Te-W with a Phase Change of the Target and its Preparation Method: China Patent, 103898452B. 2017-03-15
|
[10] |
傅树人. DSC曲线解析. 广州化学, 1991(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX199103009.htm
Fu S R. Curve analysis of DSC. Guangzhou Chem, 1991(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX199103009.htm
|
[11] |
Margrave J L. The Characterization of High-Temperature Vapors. New York: Wiley, 1967
|
[12] |
Shu H W, Jaulmes S, Ollitrault-Fichet R, et al. Système AsGeTe: Ⅰ. diagramme de phase du système As2Te3GeTe. Phases stables et métastables. J Solid State Chem, 1987, 69(1): 48 doi: 10.1016/0022-4596(87)90009-0
|
[13] |
林阳, 王博, 储茂友, 等. 相变存储靶材的制备和镀膜性能研究. 热加工工艺, 2011, 40(18): 112 doi: 10.3969/j.issn.1001-3814.2011.18.034
Lin Y, Wang B, Chu M Y, et al. Study on preparation and sputtering properties of phase-change materials target. Hot Working Technol, 2011, 40(18): 112 doi: 10.3969/j.issn.1001-3814.2011.18.034
|
[14] |
谭鑫, 扈百直, 征卫星, 等. 热压氧化铌靶材内部孔洞的形成及研究. 世界有色金属, 2017(16): 255 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201716148.htm
Tan X, Hu B Z, Zheng W X, et al. The study and formation of the holes of niobium oxide target material by hot pressing. World Nonferrous Met, 2017(16): 255 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201716148.htm
|
[15] |
张鹏飞. 机械合金化2Si-B-3C-N陶瓷的热压烧结行为与高温性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013
Zhang P F. Hot Pressing Behavior and High-Temperature Properties of Mechanically Alloyed 2Si-B-3C-N Ceramic[Dissertation]. Harbin: Harbin Institute of Technology, 2013
|
[16] |
梁苏莹, 康举, 赵霞, 等. 热压烧结Ti2AlN金属陶瓷材料的物相及显微结构. 航空材料学报, 2017, 37(3): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201703013.htm
Liang S Y, Kang J, Zhao X, et al. Phase composition and microstructure of hot-pressing sintered Ti2AlN metal-ceramic bulk material. J Aeronautical Mater, 2017, 37(3): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201703013.htm
|
[17] |
中国科学院上海硅酸盐研究所半导体玻璃组. 硫系玻璃半导体存储材料. 无机材料学报, 1973(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL197303001.htm
Semiconductor Glass Group, Shanghai Institute of Ceramics, Chinese Academy of Sciences. Sulfur glass semiconductor storage material. J Inorg Mater, 1973(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL197303001.htm
|
[1] | ZONG Yan-bing, ZHANG Xue-dong, MA Qing-yu, CANG Da-qiang. Densification mechanism of slag ceramics with different magnesium contents[J]. Chinese Journal of Engineering, 2018, 40(10): 1237-1243. DOI: 10.13374/j.issn2095-9389.2018.10.011 |
[2] | QIU Ting-ting, WU Mao, DU Zhi-yuan, QU Xuan-hui. Sintering densification process of powder metallurgy aluminum alloy[J]. Chinese Journal of Engineering, 2018, 40(9): 1075-1082. DOI: 10.13374/j.issn2095-9389.2018.09.008 |
[3] | XIE Zhi-xiang, ZHAO Hai-lei, ZHOU Xiong, SHEN Yong-na. Synthesis and properties of Al-doped Sr2MgMoO6-δ anode materials via citrate acid-complex combustion[J]. Chinese Journal of Engineering, 2012, 34(2): 174-178. DOI: 10.13374/j.issn1001-053x.2012.02.001 |
[4] | ZHANG Ruizhu, GUO Zhimeng. Influential factors of SHS-densification method for solidifying nuclear waste in SrTiO3 synroc[J]. Chinese Journal of Engineering, 2008, 30(12): 1418-1421. DOI: 10.13374/j.issn1001-053x.2008.12.023 |
[5] | GUO Shiju, ZHOU Xing, BAI Yinglong. Microstructure Characteristics of Ferrous P/M Compacts Plated Using Electroless Nickel-Phosphorus Process[J]. Chinese Journal of Engineering, 2002, 24(2): 169-172. DOI: 10.13374/j.issn1001-053x.2002.02.019 |
[6] | LIN Tao, GUO Shiju, LI Mingyi, WEI Yanping. Densification Mechanism of Warm Compaction[J]. Chinese Journal of Engineering, 2000, 22(2): 131-133. DOI: 10.13374/j.issn1001-053x.2000.02.010 |
[7] | Zhang Laiqi, Sun Zuqing, Yang Wangyue, Zhang Yue. Densification of MoSi2/SiC Composites and Their Microstructure[J]. Chinese Journal of Engineering, 1997, 19(6): 576-579. DOI: 10.13374/j.issn1001-053x.1997.06.012 |
[8] | Tang Qing, Yin Sheng, Yu Zhigang, Lai Heyi. A Study of SHS-Pressing Process of Ti-C-Ni-Mo System[J]. Chinese Journal of Engineering, 1993, 15(6): 572-575. DOI: 10.13374/j.issn1001-053x.1993.06.006 |
[9] | Yin Sheng, Miao Shuxia, Liao Xiangwei, Lai Heyi, Wang Run. Preparation of TiC/Ni Functionally Gradient Materials by SHS-Pressing[J]. Chinese Journal of Engineering, 1993, 15(1): 99-103. DOI: 10.13374/j.issn1001-053x.1993.01.018 |
[10] | Ge Changchun, Xia Yuanluo, Chen Limin. Densification Mechanism of Si3N4 with AZ-Type Non-Toxic, Non-Oxide Additives[J]. Chinese Journal of Engineering, 1991, 13(S2): 24-28. DOI: 10.13374/j.issn1001-053x.1991.s2.005 |