XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. DOI: 10.13374/j.issn2095-9389.2020.12.01.002
Citation: XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. DOI: 10.13374/j.issn2095-9389.2020.12.01.002

Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current

  • Manganese metal electrolysis is a typical nonlinear system far from the equilibrium state. In this case, nonlinear behaviors such as electrochemical oscillation and metal fractal occur in the electrode reaction process. The multiple valence state changes of manganese and the nonlinear coupling of multiple chemical reactions cause the electrolytic process to be unstable and unmanageable, and increase extra energy consumption. Therefore, a study regarding the physical and chemical processes of the electrode/solution interface will help in revealing the electrode reaction mechanism and elaborate the nonlinear behaviors of the interface reaction process. This should control the electrode reaction process more effectively and regulate the entire process more efficiently. This paper presents a new mode of chaotic current electrolysis by introducing a hyperchaotic circuit instead of the original direct current power supply. Galvanostatic polarization, anode polarization, the Tafel test, X-ray diffraction, and scanning electron microscopy were employed to analyze the relationship between the electrochemical oscillation behavior and anodic deposited manganese oxides on lead alloy anodes. Research results show that the potential oscillation behavior of the anode is suppressed to a certain extent. The average oscillation period was increased by 5.6 s, and the average oscillation amplitude was reduced by 38 mV compared with direct current polarization after 350 A·m−2 constant current polarization for 30 min. This would help to reduce the generation of anode slime and additional energy consumption during electrolysis. At the same time, the deposited MnO2 on the anode under hyperchaotic current had a dense and flat surface, which improved the oxygen evolution reaction activity and the corrosion resistance of the lead alloy anode. The comprehensive analysis demonstrated that the application of hyperchaotic current to manganese metal electrolysis could achieve effective regulation of anode electrochemical oscillation, providing a new insight for the further reduction in the energy consumption and pollution emission in the electrolysis process.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return