ZOU Lei-lei, LIU Qing, DU Xiao-chen, ZHANG Jiang-shan, LI Ming. Secondary cooling control based on solidification characteristics of non-quenched and tempered steel[J]. Chinese Journal of Engineering, 2022, 44(3): 357-366. DOI: 10.13374/j.issn2095-9389.2021.09.19.001
Citation: ZOU Lei-lei, LIU Qing, DU Xiao-chen, ZHANG Jiang-shan, LI Ming. Secondary cooling control based on solidification characteristics of non-quenched and tempered steel[J]. Chinese Journal of Engineering, 2022, 44(3): 357-366. DOI: 10.13374/j.issn2095-9389.2021.09.19.001

Secondary cooling control based on solidification characteristics of non-quenched and tempered steel

More Information
  • Corresponding author:

    LIU Qing, E-mail: qliu@ustb.edu.cn

  • Received Date: September 18, 2021
  • Available Online: October 21, 2021
  • Published Date: January 07, 2022
  • Due to the high crack sensitivity of non-quenched and tempered steel and the difficulty of accurate control of secondary cooling, surface cracks of the continuous casting strand occur frequently. A secondary cooling control method based on the solidification characteristics of non-quenched and tempered steel was proposed. For the solidification characteristics, the effect of the cooling rate on the secondary phase precipitation was studied using a confocal microscope and field emission scanning electron microscopy (FESEM), and the phase transformation mechanism of proeutectoid ferrite was clarified. Results show that the second-phase particles start to precipitate at 1086 °C and reach a peak at ~912 °C. When the cooling rate ranges from 0.1 to 5 °C·s−1, the size and volume fraction of the second-phase particles decrease with the increase of the cooling rate, and the second-phase particles transition from a chain-like distribution at the grain boundaries to a uniform distribution in the matrix. Increasing the cooling rate is helpful to weaken the pinning effect of the precipitates and strengthen the microstructure of the bloom surface. As for the secondary cooling optimization, a heat transfer and solidification model considering a transverse water distribution was established, and a secondary cooling optimization method based on the solidification characteristics of non-quenched and tempered steel was proposed. Strong cooling is performed after the strand leaves the mold to meet the requirements of a reasonable cooling rate and temperature range for controlling the precipitation of particles. Industrial trials confirm the feasibility of the technical solution. In addition, the study shows that reducing the spray distance can improve the transverse non-uniformity of secondary cooling water. In this study, the influence of the secondary cooling water amount and spray distance on the crack sensitivity of non-quenched and tempered steel was comprehensively considered, and the secondary cooling process was optimized by studying the “longitudinal‒transverse” solidification cooling. The proposed optimization scheme contributes to the improvement of surface and subsurface cracks of continuous casting bloom.
  • [1]
    杨勇, 周乐育, 蒋鹏, 等. 模锻变形对曲轴用非调质钢1538MV显微组织的影响. 工程科学学报, 2018, 40(5):579

    Yang Y, Zhou L Y, Jiang P, et al. Influence of die-forging deformation on microstructure of 1538MV non-quenched and tempered steel for crankshaft. Chin J Eng, 2018, 40(5): 579
    [2]
    Lu J L, Wang Y P, Wang Q M, et al. Effect of MnS inclusions distribution on intragranular ferrite formation in medium carbon non-quenched and tempered steel for large-sized crankshaft. ISIJ Int, 2019, 59(3): 524 doi: 10.2355/isijinternational.ISIJINT-2018-509
    [3]
    刘志远, 王重君, 蔡兆镇, 等. 含铌微合金钢连铸坯角部裂纹控制二冷新工艺. 中国冶金, 2018, 28(3):22

    Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22
    [4]
    Suzuki K I, Miyagawa S, Saito Y, et al. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab. ISIJ Int, 1995, 35(1): 34 doi: 10.2355/isijinternational.35.34
    [5]
    Du C, Zhang J, Wen J, et al. Hot ductility trough elimination through single cycle of intense cooling and reheating for microalloyed steel casting. Ironmak Steelmak, 2016, 43(5): 331 doi: 10.1179/1743281215Y.0000000044
    [6]
    Baker T N. Microalloyed steels. Ironmak Steelmak, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063
    [7]
    Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9
    [8]
    Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0
    [9]
    Xie S S, Lee J D, Yoon U S, et al. Compression test to reveal surface crack sensitivity between 700 and 1100.DEG. C. of Nb-bearing and high Ni continuous casting slabs. ISIJ Int, 2002, 42(7): 708
    [10]
    Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall Mater Trans A, 2006, 37(7): 2147 doi: 10.1007/BF02586135
    [11]
    Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5
    [12]
    Luo Y W, Guo H J, Guo J. Effect of cooling rate on the transformation characteristics and precipitation behaviour of carbides in AISI M42 high-speed steel. Ironmak Steelmak, 2019, 46(7): 698 doi: 10.1080/03019233.2018.1461593
    [13]
    Ma F J, Wen G H, Wang W L. Effect of cooling rates on the second-phase precipitation and proeutectoid phase transformation of a Nb-Ti microalloyed steel slab. Steel Res Int, 2013, 84(4): 370 doi: 10.1002/srin.201200161
    [14]
    Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742
    [15]
    马范军. 微合金钢铸坯第二相析出行为及表层组织演变研究[学位论文]. 重庆: 重庆大学, 2010

    Ma F J. Precipitation Behavior of the Second Phase and Microstructural Evolution of the Surface Layer of Micro-Alloyed Slabs in Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2010
    [16]
    李菊艳, 文光华, 唐萍, 等. 攀钢板坯连铸机不同断面铸坯角部横裂纹分析. 北京科技大学学报, 2011, 33(3):296

    Li J Y, Wen G H, Tang P, et al. Analysis on corner transverse cracks of slabs with different section dimensions cast with Pangang slab casting machine. J Univ Sci Technol Beijing, 2011, 33(3): 296
    [17]
    韩延申, 张江山, 邹雷雷, 等. 喷嘴喷淋距离对连铸小方坯二冷均匀性的影响. 工程科学学报, 2020, 42(6):739

    Han Y S, Zhang J S, Zou L L, et al. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet. Chin J Eng, 2020, 42(6): 739
    [18]
    唐萍, 罗琳青, 文光华, 等. 基于激光共聚焦显微镜模拟微合金钢连铸过程中第二相的析出行为. 工程科学学报, 2015, 37(9):1130

    Tang P, Luo L Q, Wen G H, et al. Precipitation behaviors of secondary phases in micro-alloy steels during continuous casting simulated by CLSM. Chin J Eng, 2015, 37(9): 1130
    [19]
    Griesser S, Bernhard C, Dippenaar R. Mechanism of the peritectic phase transition in Fe–C and Fe–Ni alloys under conditions close to chemical and thermal equilibrium. ISIJ Int, 2014, 54(2): 466 doi: 10.2355/isijinternational.54.466
    [20]
    Slater C, Hechu K, Sridhar S. Characterisation of solidification using combined confocal scanning laser microscopy with infrared thermography. Mater Charact, 2017, 126: 144 doi: 10.1016/j.matchar.2017.02.025
    [21]
    杨柳. 微合金化钢连铸板坯表面组织特征及其调控机制研究[学位论文]. 武汉: 武汉科技大学, 2019

    Yang L. Study on Surface Structure Characteristic and Control Mechanism of Continuous Casting Slabs of Micro-Alloyed Steels [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2019
    [22]
    Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
    [23]
    韩延申. 基于喷嘴喷淋特性的连铸方坯二次冷却控制研究[学位论文]. 北京: 北京科技大学, 2021

    Han Y S. Study on Secondary Cooling Control of Continuous Casting Billet Based on Nozzle Spray Characteristic [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
    [24]
    Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmak Steelmak, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161
    [25]
    王先勇, 刘青, 胡志刚, 等. 喷嘴布置方式对中厚板坯连铸二次冷却效果的影响. 北京科技大学学报, 2010, 32(8):1064

    Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064
  • Related Articles

    [1]WANG Huan, WANG Min, LIU Qing, XING Lidong, BAO Yanping. Research progress on intelligent control and decision-making models for the ladle furnace refining process[J]. Chinese Journal of Engineering, 2024, 46(10): 1739-1752. DOI: 10.13374/j.issn2095-9389.2023.12.19.001
    [2]OU Yang, GUO Zhengyu, LUO Delin, MIAO Kehua. Collaborative air combat maneuvering decision-making method based on graph convolutional deep reinforcement learning[J]. Chinese Journal of Engineering, 2024, 46(7): 1227-1236. DOI: 10.13374/j.issn2095-9389.2023.09.25.004
    [3]DING Yunlong, KUANG Minchi, ZHU Jihong, ZHU Jingyu, QIAO Zhi. Intelligent decision making and target assignment of multi-aircraft air combat based on the LSTM–PPO algorithm[J]. Chinese Journal of Engineering, 2024, 46(7): 1179-1186. DOI: 10.13374/j.issn2095-9389.2023.10.13.003
    [4]LI Ting. Research and application of a two-step decision-making method for efficient overseas oil and gas production[J]. Chinese Journal of Engineering, 2024, 46(6): 1161-1168. DOI: 10.13374/j.issn2095-9389.2023.12.22.002
    [5]XIA Deng-you, QIAN Xin-ming, KANG Qing-chun, DUAN Zai-peng. Emergency decision-making method based on the cloud model[J]. Chinese Journal of Engineering, 2014, 36(7): 972-978. DOI: 10.13374/j.issn1001-053x.2014.07.018
    [6]DONG Guang-jing, SHI Can-tao, LI Tie-ke, WANG Bo-lin. Optimization model of steel tube location decision based on clustering and constraint satisfaction algorithm[J]. Chinese Journal of Engineering, 2014, 36(1): 123-130. DOI: 10.13374/j.issn1001-053x.2014.01.019
    [7]YANG Bo, CHENG Zhen-bo, DENG Zhi-dong. Sparse ESN with a leaky integrator for matching decision-making problems[J]. Chinese Journal of Engineering, 2012, 34(1): 6-11. DOI: 10.13374/j.issn1001-053x.2012.01.002
    [8]ZHANG Nengfu, CAI Sijing, LIU Chaoma. Application of Option Pricing Theory to Decision-making on Mining Projects[J]. Chinese Journal of Engineering, 2002, 24(1): 5-7. DOI: 10.13374/j.issn1001-053x.2002.01.030
    [9]Fan Yumei. Decision Making Analysis of Production Process Model Stability[J]. Chinese Journal of Engineering, 1998, 20(2): 192-196. DOI: 10.13374/j.issn1001-053x.1998.02.044
    [10]Gao Junshan, Liu Zhiwei, Chen Zhicheng. Comparison of Several Theories on Decision Making Process[J]. Chinese Journal of Engineering, 1996, 18(S1): 39-43. DOI: 10.13374/j.issn1001-053x.1996.s1.010
  • Cited by

    Periodical cited type(6)

    1. 孙军. 基于物联网的工控设备网络穿透技术的应用. 自动化应用. 2024(08): 90-93 .
    2. 潘文龙,李胜军,高全军,杨路余,刘庆富,张和明. 基于工业互联网的煤矿综采设备信息模型研究. 工矿自动化. 2024(05): 84-92 .
    3. 张帆,王振宇,王红梅,万月亮,宁焕生,李莎. 基于主动探测的Web容器探测识别方法. 工程科学学报. 2024(08): 1446-1457 . 本站查看
    4. 李维汉,戴晓婧,周晓磊,刘红再,丁攀. 基于“云-边-端”的工业控制系统网络安全防御体系设计. 邮电设计技术. 2024(11): 37-42 .
    5. 张子腾,王文烨,郑卓琳,袁亚洲. 基于模糊神经网络的工业数据流优先级适配机制. 移动通信. 2023(08): 39-45 .
    6. 袁健,徐舒,龙湛,潘桂新,林作志. MEC边缘云能力开放研究与实践. 邮电设计技术. 2023(11): 55-61 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (947) PDF downloads (99) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return