CHEN Chuang, LI Xianfeng, SHI Jiantao. Research progress on remaining useful life interval prediction of equipment based on deep learning[J]. Chinese Journal of Engineering, 2024, 46(4): 723-734. DOI: 10.13374/j.issn2095-9389.2023.06.19.003
Citation: CHEN Chuang, LI Xianfeng, SHI Jiantao. Research progress on remaining useful life interval prediction of equipment based on deep learning[J]. Chinese Journal of Engineering, 2024, 46(4): 723-734. DOI: 10.13374/j.issn2095-9389.2023.06.19.003

Research progress on remaining useful life interval prediction of equipment based on deep learning

More Information
  • Corresponding author:

    SHI Jiantao, E-mail: sjt11@tsinghua.org.cn

  • Received Date: June 18, 2023
  • Available Online: October 18, 2023
  • Deep learning has been extensively employed for predicting the remaining useful life (RUL) of equipment owing to the powerful feature extraction ability of deep learning. However, the deep learning prediction results are often affected by random noise, modeling parameters, and other factors, considerably reducing the credibility of point predictions. This reduction may lead to inappropriate decisions and sometimes even cause equipment operation collapse. Therefore, the key to ensuring the smooth progress of the entire industrial production process is accurately quantifying the uncertainties transmitted in the output of the RUL prediction model and forming an effective and reasonable maintenance decision plan. The prediction interval is a statistical measure used to quantify uncertainty in predictions. The prediction interval comprises the upper and lower prediction bounds between which an unknown value is expected with a specific probability. The option of prediction intervals enables decision-makers and operational planners to effectively quantify the uncertainty level associated with point predictions and consider multiple solutions for optimal and worst-case conditions. A wide prediction interval indicates a high degree of uncertainty in the underlying system operation. This information signals decision-makers to avoid choosing risky actions under uncertain conditions. By contrast, a narrow prediction interval implies that decisions can be made with more confidence and unexpected situations will be less in the future. The aim of this paper is to analyze and elaborate the basic ideas and development trends of current deep learning-based RUL interval prediction models to provide a good reference for exploring implementable deep learning-based RUL interval prediction model that is highly reliable, cost-efficient, and easy. Thus, while facing the practical demand of uncertainty quantification in the modeling of equipment RUL based on deep learning, this paper first analyzes the sources of uncertainty in RUL prediction, such as data quality, model error, and changes in model parameters and the external environment. Subsequently, five popular deep learning-based RUL interval prediction models are presented: bootstrap deep learning, local uncertainty, stochastic process deep learning, Bayesian deep learning, and deep learning quantile regression. Through the model establishment process and current development status analysis, the advantages and disadvantages of the five RUL interval prediction models are summarized. Finally, the challenges encountered during the current research on the RUL interval prediction of equipment based on deep learning and potential future research directions are explored.

  • [1]
    陆宁云, 陈闯, 姜斌, 等. 复杂系统维护策略最新研究进展:从视情维护到预测性维护. 自动化学报, 2021, 47(1):1

    Lu N Y, Chen C, Jiang B, et al. Latest progress on maintenance strategy of complex system: From condition-based maintenance to predictive maintenance. Acta Autom Sin, 2021, 47(1): 1
    [2]
    胡昌华, 张浩, 喻勇, 等. 基于深度学习的复杂退化系统剩余寿命预测研究现状与挑战. 电光与控制, 2021, 28(2):1

    Hu C H, Zhang H, Yu Y, et al. Deep learning-based RUL prediction of complex degradation systems: State of the art and challenges. Electron Opt Contr, 2021, 28(2): 1
    [3]
    周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展. 自动化学报, 2013, 39(6):711

    Zhou D H, Wei M H, Si X S. A survey on anomaly detection, life prediction and maintenance decision for industrial processes. Acta Autom Sin, 2013, 39(6): 711
    [4]
    Chen C, Lu N Y, Jiang B, et al. A risk-averse remaining useful life estimation for predictive maintenance. IEEE/CAA J Autom Sin, 2021, 8(2): 412 doi: 10.1109/JAS.2021.1003835
    [5]
    Chen C, Zhu Z H, Shi J T, et al. Dynamic predictive maintenance scheduling using deep learning ensemble for system health prognostics. IEEE Sens J, 2021, 21(23): 26878 doi: 10.1109/JSEN.2021.3119553
    [6]
    Chen C, Lu N Y, Jiang B, et al. Condition-based maintenance optimization for continuously monitored degrading systems under imperfect maintenance actions. J Syst Eng Electron, 2020, 31(4): 841 doi: 10.23919/JSEE.2020.000057
    [7]
    袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报, 2020, 46(10):2013

    Yuan Y, Zhang Y, Ding H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Autom Sin, 2020, 46(10): 2013
    [8]
    Ma M, Mao Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans Ind Inform, 2021, 17(3): 1658 doi: 10.1109/TII.2020.2991796
    [9]
    Wang C S, Lu N Y, Cheng Y H, et al. A data-driven aero-engine degradation prognostic strategy. IEEE Trans Cybern, 2021, 51(3): 1531 doi: 10.1109/TCYB.2019.2938244
    [10]
    Wu J, Hu K, Cheng Y W, et al. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network. ISA Trans, 2020, 97: 241 doi: 10.1016/j.isatra.2019.07.004
    [11]
    张永峰, 陆志强. 基于集成神经网络的剩余寿命预测. 工程科学学报, 2020, 42(10):1372

    Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
    [12]
    Liu H, Liu Z Y, Jia W Q, et al. Remaining useful life prediction using a novel feature-attention-based end-to-end approach. IEEE Trans Ind Inform, 2021, 17(2): 1197 doi: 10.1109/TII.2020.2983760
    [13]
    魏孟, 王桥, 叶敏, 等. 基于NARX动态神经网络的锂离子电池剩余寿命间接预测. 工程科学学报, 2022, 44(3):380 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203007

    Wei M, Wang Q, Ye M, et al. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network. Chin J Eng, 2022, 44(3): 380 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203007
    [14]
    喻勇, 司小胜, 胡昌华, 等. 数据驱动的可靠性评估与寿命预测研究进展:基于协变量的方法. 自动化学报, 2018, 44(2):216

    Yu Y, Si X S, Hu C H, et al. Data driven reliability assessment and life-time prognostics: A review on covariate models. Acta Autom Sin, 2018, 44(2): 216
    [15]
    裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述. 机械工程学报, 2019, 55(8):1 doi: 10.3901/JME.2019.08.001

    Pei H, Hu C H, Si X S, et al. Review of machine learning based remaining useful life prediction methods for equipment. J Mech Eng, 2019, 55(8): 1 doi: 10.3901/JME.2019.08.001
    [16]
    李银, 王建峰, 莫伟权, 等. 基于数据驱动的锂离子电池剩余寿命预测综述. 电源学报, https://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html

    Li Y, Wang J F, Mo W Q, et al. A review of remaining useful life prediction for lithium-ion batteries based on data-driven. J Power Supply, https://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html
    [17]
    Wang Y D, Zhao Y F, Addepalli S. Remaining useful life prediction using deep learning approaches: A review. Procedia Manuf, 2020, 49: 81 doi: 10.1016/j.promfg.2020.06.015
    [18]
    李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术. 自动化学报, 2022, 48(9):2119

    Li T M, Si X S, Liu X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Autom Sin, 2022, 48(9): 2119
    [19]
    Khosravi A, Nahavandi S, Creighton D, et al. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans Neural Netw, 2011, 22(9): 1341 doi: 10.1109/TNN.2011.2162110
    [20]
    李京峰, 陈云翔, 项华春, 等. 基于LSTM–DBN的航空发动机剩余寿命预测. 系统工程与电子技术, 2020, 42(7):1637 doi: 10.3969/j.issn.1001-506X.2020.07.28

    Li J F, Chen Y X, Xiang H C, et al. Remaining useful life prediction for aircraft engine based on LSTM–DBN. Syst Eng Electron, 2020, 42(7): 1637 doi: 10.3969/j.issn.1001-506X.2020.07.28
    [21]
    Liao L X, Jin W J, Pavel R. Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Trans Ind Electron, 2016, 63(11): 7076 doi: 10.1109/TIE.2016.2586442
    [22]
    Zhang C, Lim P, Qin A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans Neural Netw Learn Syst, 2017, 28(10): 2306 doi: 10.1109/TNNLS.2016.2582798
    [23]
    Ma M, Sun C, Chen X F. Discriminative deep belief networks with ant colony optimization for health status assessment of machine. IEEE Trans Instrum Meas, 2017, 66(12): 3115 doi: 10.1109/TIM.2017.2735661
    [24]
    Deutsch J, He D. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans Syst Man Cybern, 2018, 48(1): 11 doi: 10.1109/TSMC.2017.2697842
    [25]
    Deutsch J, He M A, He D. Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach. Appl Sci, 2017, 7(7): 649 doi: 10.3390/app7070649
    [26]
    郭宏, 任必聪, 闫献国, 等. 基于深度卷积神经网络的刀具寿命动态预测研究. 控制与决策, 2022, 37(8):2119

    Guo H, Ren B C, Yan X G, et al. Research on dynamic prediction of tool life based on deep convolutional neural network. Contr Decis, 2022, 37(8): 2119
    [27]
    Kara A. Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation. Comput Ind Eng, 2022, 169: 108211 doi: 10.1016/j.cie.2022.108211
    [28]
    Xu X W, Li X, Ming W W, et al. A novel multi-scale CNN and attention mechanism method with multi-sensor signal for remaining useful life prediction. Comput Ind Eng, 2022, 169: 108204 doi: 10.1016/j.cie.2022.108204
    [29]
    Zhu J, Chen N, Peng W W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans Ind Electron, 2019, 66(4): 3208 doi: 10.1109/TIE.2018.2844856
    [30]
    Yang B Y, Liu R N, Zio E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Trans Ind Electron, 2019, 66(12): 9521 doi: 10.1109/TIE.2019.2924605
    [31]
    Kim T S, Sohn S Y. Multitask learning for health condition identification and remaining useful life prediction: Deep convolutional neural network approach. J Intell Manuf, 2021, 32(8): 2169 doi: 10.1007/s10845-020-01630-w
    [32]
    史永胜, 施梦琢, 丁恩松, 等. 基于CEEMDAN–LSTM组合的锂离子电池寿命预测方法. 工程科学学报, 2021, 43(7):985

    Shi Y S, Shi M Z, Ding E S, et al. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM. Chin J Eng, 2021, 43(7): 985
    [33]
    Zhu X Y, Zhang P, Xie M. A joint long shortterm memory and adaBoost regression approach with application to remaining useful life estimation. Measurement, 2021, 170: 108707 doi: 10.1016/j.measurement.2020.108707
    [34]
    Wu J Y, Wu M, Chen Z H, et al. Degradation-aware remaining useful life prediction with LSTM autoencoder. IEEE Trans Instrum Meas, 2021, 70: 1
    [35]
    Xiang S, Qin Y, Luo J, et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction. Reliab Eng Syst Saf, 2021, 216: 107927 doi: 10.1016/j.ress.2021.107927
    [36]
    Jin R B, Chen Z H, Wu K Y, et al. Bi-LSTM-based two-stream network for machine remaining useful life prediction. IEEE Trans Instrum Meas, 2022, 71: 1
    [37]
    Sun S G, Liu J F, Wang J Q, et al. Remaining useful life prediction for AC contactor based on MMPE and LSTM with dual attention mechanism. IEEE Trans Instrum Meas, 2022, 71: 1
    [38]
    Shrivastava N A, Khosravi A, Panigrahi B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Trans Ind Inform, 2015, 11(2): 322 doi: 10.1109/TII.2015.2389625
    [39]
    Lins I D, Droguett E L, das Chagas Moura M, et al. Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression. Reliab Eng Syst Saf, 2015, 137: 120 doi: 10.1016/j.ress.2015.01.007
    [40]
    Huang C G, Huang H Z, Li Y F, et al. A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing. J Manuf Syst, 2021, 61: 757 doi: 10.1016/j.jmsy.2021.03.012
    [41]
    Huang C G, Huang H Z, Li Y F, et al. Fault prognosis using deep convolutional neural network and bootstrap-based method // 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). Warwick, 2021: 742
    [42]
    Liao Y, Zhang L X, Liu C D. Uncertainty prediction of remaining useful life using long short-term memory network based on bootstrap method // 2018 IEEE International Conference on Prognostics and Health Management (ICPHM). Seattle, 2018: 1
    [43]
    Zhao C Y, Huang X Z, Liu H Z, et al. A novel bootstrap ensemble learning convolutional simple recurrent unit method for remaining useful life interval prediction of turbofan engines. Meas Sci Technol, 2022, 33(12): 125004 doi: 10.1088/1361-6501/ac84f6
    [44]
    She D M, Jia M P. A BiGRU method for remaining useful life prediction of machinery. Measurement, 2021, 167: 108277 doi: 10.1016/j.measurement.2020.108277
    [45]
    Guo J Y, Wang J, Wang Z Y, et al. A CNN–BiLSTM-Bootstrap integrated method for remaining useful life prediction of rolling bearings. Qual Reliab Eng Int, 2023, 39(5): 1796 doi: 10.1002/qre.3314
    [46]
    Shrestha D L, Solomatine D P. Machine learning approaches for estimation of prediction interval for the model output. Neural Netw, 2006, 19(2): 225 doi: 10.1016/j.neunet.2006.01.012
    [47]
    Zhang Z D, Qin H, Yao L Q, et al. Interval prediction method based on long–short term memory networks for system integrated of hydro, wind and solar power. Energy Procedia, 2019, 158: 6176 doi: 10.1016/j.egypro.2019.01.491
    [48]
    Solomatine D P, Shrestha D L. A novel method to estimate model uncertainty using machine learning techniques. Water Resour Res, 2009, 45(12): W00B11
    [49]
    Dogulu N, López López P, Solomatine D P, et al. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol Earth Syst Sci, 2015, 19(7): 3181 doi: 10.5194/hess-19-3181-2015
    [50]
    Rahmati O, Choubin B, Fathabadi A, et al. Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Sci Total Environ, 2019, 688: 855 doi: 10.1016/j.scitotenv.2019.06.320
    [51]
    Chen C, Lu N Y, Jiang B, et al. Prediction interval estimation of aeroengine remaining useful life based on bidirectional long short-term memory network. IEEE Trans Instrum Meas, 2021, 70: 1
    [52]
    Chen C, Shi J T, Lu N Y, et al. Data-driven predictive maintenance strategy considering the uncertainty in remaining useful life prediction. Neurocomputing, 2022, 494: 79 doi: 10.1016/j.neucom.2022.04.055
    [53]
    Ross S M. Stochastic Processes. Hoboken: John Wiley & Sons, 1995
    [54]
    Song K, Cui L R. A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction. Reliab Eng Syst Saf, 2022, 219: 108200 doi: 10.1016/j.ress.2021.108200
    [55]
    Wang H, Liao H T, Ma X B, et al. Remaining useful life prediction and optimal maintenance time determination for a single unit using isotonic regression and gamma process model. Reliab Eng Syst Saf, 2021, 210: 107504 doi: 10.1016/j.ress.2021.107504
    [56]
    Ling M H, Ng H K T, Tsui K L. Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process. Reliab Eng Syst Saf, 2019, 184: 77 doi: 10.1016/j.ress.2017.11.017
    [57]
    Zhang S Y, Zhai Q Q, Shi X, et al. A Wiener process model with dynamic covariate for degradation modeling and remaining useful life prediction. IEEE Trans Reliab, 2023, 72(1): 214 doi: 10.1109/TR.2022.3159273
    [58]
    Yu W N, Shao Y M, Xu J, et al. An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation. Reliab Eng Syst Saf, 2022, 217: 108099 doi: 10.1016/j.ress.2021.108099
    [59]
    Li N P, Lei Y G, Yan T, et al. A Wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability. IEEE Trans Ind Electron, 2019, 66(3): 2092 doi: 10.1109/TIE.2018.2838078
    [60]
    Mehr C B, McFadden J A. Certain properties of Gaussian processes and their first-passage times. J R Stat Soc, 1965, 27(3): 505
    [61]
    杨秀, 陈斌超, 朱兰, 等. 基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测. 电网技术, 2019, 43(9):3061

    Yang X, Chen B C, Zhu L, et al. Short-term public building load probability density prediction based on correlation analysis and long- and short-term memory network quantile regression. Power Syst Technol, 2019, 43(9): 3061
    [62]
    Hu C H, Pei H, Si X S, et al. A prognostic model based on DBN and diffusion process for degrading bearing. IEEE Trans Ind Electron, 2020, 67(10): 8767 doi: 10.1109/TIE.2019.2947839
    [63]
    Li T M, Pei H, Si X S, et al. Prognosis for stochastic degrading systems with massive data: A data-model interactive perspective. Reliab Eng Syst Saf, 2023, 237: 109344 doi: 10.1016/j.ress.2023.109344
    [64]
    周涛, 汪永超, 张栩静, 等. 基于深度特征融合网络的数模联动随机退化设备剩余寿命预测. 计算机集成制造系统, 2022, 28(12):3937

    Zhou T, Wang Y C, Zhang X J, et al. Data-model interactive remaining useful life prediction of stochastic degrading devices based on deep feature fusion network. Comput Integr Manuf Syst, 2022, 28(12): 3937
    [65]
    Zhang J S, Huang C S, Chow M Y, et al. A data-model interactive remaining useful life prediction approach of lithium-ion batteries based on PF–BiGRU–TSAM. IEEE Trans Ind Inform, 2023, PP(99): 1
    [66]
    Chen X W, Liu Z. A long short-term memory neural network-based Wiener process model for remaining useful life prediction. Reliab Eng Syst Saf, 2022, 226: 108651 doi: 10.1016/j.ress.2022.108651
    [67]
    Bernardo J M, Smith A F M. Bayesian Theory. Hoboken: Wiley & Sons, 2009
    [68]
    季文强. 基于深度学习和不确定性量化的数据驱动剩余寿命预测方法研究[学位论文]. 合肥:中国科学技术大学, 2020

    Ji W Q. Research on Data-driven Remaining Useful Life Prediction Method Based on Deep Learning and Uncertainty Quantification [Dissertation]. Hefei: University of Science and Technology of China, 2020
    [69]
    Peng W W, Ye Z S, Chen N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty. IEEE Trans Ind Electron, 2020, 67(3): 2283 doi: 10.1109/TIE.2019.2907440
    [70]
    Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning // Proceedings of International Conference on Machine Learning. New York, 2016: 1050
    [71]
    Benker M, Furtner L, Semm T, et al. Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo. J Manuf Syst, 2021, 61: 799 doi: 10.1016/j.jmsy.2020.11.005
    [72]
    Chen K J, Liu J N, Guo W W, et al. A two-stage approach based on Bayesian deep learning for predicting remaining useful life of rolling element bearings. Comput Electr Eng, 2023, 109: 108745 doi: 10.1016/j.compeleceng.2023.108745
    [73]
    Kim M, Liu K B. A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics. IISE Trans, 2021, 53(3): 326 doi: 10.1080/24725854.2020.1766729
    [74]
    Kraus M, Feuerriegel S. Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences. Decis Support Syst, 2019, 125: 113100 doi: 10.1016/j.dss.2019.113100
    [75]
    Huang D S, Bai R, Zhao S, et al. A hybrid Bayesian deep learning model for remaining useful life prognostics and uncertainty quantification // 2021 IEEE International Conference on Prognostics and Health Management (ICPHM). Detroit (Romulus), 2021: 1
    [76]
    Caceres J, Gonzalez D, Zhou T T, et al. A probabilistic Bayesian recurrent neural network for remaining useful life prognostics considering epistemic and aleatory uncertainties. Struct Contr Heath Monit, 2021, 28(10): e2811
    [77]
    Mazaev G, Crevecoeur G, Van Hoecke S. Bayesian convolutional neural networks for remaining useful life prognostics of solenoid valves with uncertainty estimations. IEEE Trans Ind Inform, 2021, 17(12): 8418 doi: 10.1109/TII.2021.3078193
    [78]
    Zhu R, Chen Y, Peng W W, et al. Bayesian deep-learning for RUL prediction: An active learning perspective. Reliab Eng Syst Saf, 2022, 228: 108758 doi: 10.1016/j.ress.2022.108758
    [79]
    Zhuang L L, Xu A C, Wang X L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab Eng Syst Saf, 2023, 234: 109181 doi: 10.1016/j.ress.2023.109181
    [80]
    Zhang S X, Liu Z T, Su H Y. A Bayesian mixture neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Transp Electrif, 2022, 8(4): 4708 doi: 10.1109/TTE.2022.3161140
    [81]
    张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi–LSTM网络的锂电池剩余寿命预测方法. 电子学报, 2022, 50(3):619 doi: 10.12263/DZXB.20210207

    Zhang H, Hu C H, Du D B, et al. Remaining useful life prediction method of lithium-ion battery based on Bi–LSTM network under multi-state influence. Acta Electron Sin, 2022, 50(3): 619 doi: 10.12263/DZXB.20210207
    [82]
    Koenker R. Quantile Regression. Cambridge: Cambridge University Press, 2005
    [83]
    刘泽, 张闯, 齐磊, 等. 基于CNN–BiLSTM的锂电池剩余使用寿命概率密度预测. 电源技术, 2023, 47(1):57 doi: 10.3969/j.issn.1002-087X.2023.01.013

    Liu Z, Zhang C, Qi L, et al. Prediction of probability density of remaining useful life of lithium ion battery based on CNN–BiLSTM. Chin J Power Sources, 2023, 47(1): 57 doi: 10.3969/j.issn.1002-087X.2023.01.013
    [84]
    Borré A, Seman L O, Camponogara E, et al. Machine fault detection using a hybrid CNN–LSTM attention-based model. Sensors, 2023, 23(9): 4512 doi: 10.3390/s23094512
    [85]
    Chen C, Shi J T, Shen M Q, et al. A predictive maintenance strategy using deep learning quantile regression and kernel density estimation for failure prediction. IEEE Trans Instrum Meas, 2023, 72: 1
    [86]
    Chen C, Tao G Y, Shi J T, et al. A lithium-ion battery degradation prediction model with uncertainty quantification for its predictive maintenance. IEEE Trans Ind Electron, 2024, 71(4): 3650 doi: 10.1109/TIE.2023.3274874
    [87]
    Zhang M, Wang D, Amaitik N, et al. A distributional perspective on remaining useful life prediction with deep learning and quantile regression. IEEE Open J Instrum Meas, 2022, 1: 1
    [88]
    Tian Q P, Wang H L. Predicting remaining useful life of rolling bearings based on reliable degradation indicator and temporal convolution network with the quantile regression. Appl Sci, 2021, 11(11): 4773 doi: 10.3390/app11114773
    [89]
    Wang L, Cao H R, Xu H, et al. A gated graph convolutional network with multi-sensor signals for remaining useful life prediction. Knowl Based Syst, 2022, 252: 109340 doi: 10.1016/j.knosys.2022.109340
  • Related Articles

    [1]WANG Huan, WANG Min, LIU Qing, XING Lidong, BAO Yanping. Research progress on intelligent control and decision-making models for the ladle furnace refining process[J]. Chinese Journal of Engineering, 2024, 46(10): 1739-1752. DOI: 10.13374/j.issn2095-9389.2023.12.19.001
    [2]OU Yang, GUO Zhengyu, LUO Delin, MIAO Kehua. Collaborative air combat maneuvering decision-making method based on graph convolutional deep reinforcement learning[J]. Chinese Journal of Engineering, 2024, 46(7): 1227-1236. DOI: 10.13374/j.issn2095-9389.2023.09.25.004
    [3]DING Yunlong, KUANG Minchi, ZHU Jihong, ZHU Jingyu, QIAO Zhi. Intelligent decision making and target assignment of multi-aircraft air combat based on the LSTM–PPO algorithm[J]. Chinese Journal of Engineering, 2024, 46(7): 1179-1186. DOI: 10.13374/j.issn2095-9389.2023.10.13.003
    [4]LI Ting. Research and application of a two-step decision-making method for efficient overseas oil and gas production[J]. Chinese Journal of Engineering, 2024, 46(6): 1161-1168. DOI: 10.13374/j.issn2095-9389.2023.12.22.002
    [5]XIA Deng-you, QIAN Xin-ming, KANG Qing-chun, DUAN Zai-peng. Emergency decision-making method based on the cloud model[J]. Chinese Journal of Engineering, 2014, 36(7): 972-978. DOI: 10.13374/j.issn1001-053x.2014.07.018
    [6]DONG Guang-jing, SHI Can-tao, LI Tie-ke, WANG Bo-lin. Optimization model of steel tube location decision based on clustering and constraint satisfaction algorithm[J]. Chinese Journal of Engineering, 2014, 36(1): 123-130. DOI: 10.13374/j.issn1001-053x.2014.01.019
    [7]YANG Bo, CHENG Zhen-bo, DENG Zhi-dong. Sparse ESN with a leaky integrator for matching decision-making problems[J]. Chinese Journal of Engineering, 2012, 34(1): 6-11. DOI: 10.13374/j.issn1001-053x.2012.01.002
    [8]ZHANG Nengfu, CAI Sijing, LIU Chaoma. Application of Option Pricing Theory to Decision-making on Mining Projects[J]. Chinese Journal of Engineering, 2002, 24(1): 5-7. DOI: 10.13374/j.issn1001-053x.2002.01.030
    [9]Fan Yumei. Decision Making Analysis of Production Process Model Stability[J]. Chinese Journal of Engineering, 1998, 20(2): 192-196. DOI: 10.13374/j.issn1001-053x.1998.02.044
    [10]Gao Junshan, Liu Zhiwei, Chen Zhicheng. Comparison of Several Theories on Decision Making Process[J]. Chinese Journal of Engineering, 1996, 18(S1): 39-43. DOI: 10.13374/j.issn1001-053x.1996.s1.010
  • Cited by

    Periodical cited type(6)

    1. 孙军. 基于物联网的工控设备网络穿透技术的应用. 自动化应用. 2024(08): 90-93 .
    2. 潘文龙,李胜军,高全军,杨路余,刘庆富,张和明. 基于工业互联网的煤矿综采设备信息模型研究. 工矿自动化. 2024(05): 84-92 .
    3. 张帆,王振宇,王红梅,万月亮,宁焕生,李莎. 基于主动探测的Web容器探测识别方法. 工程科学学报. 2024(08): 1446-1457 . 本站查看
    4. 李维汉,戴晓婧,周晓磊,刘红再,丁攀. 基于“云-边-端”的工业控制系统网络安全防御体系设计. 邮电设计技术. 2024(11): 37-42 .
    5. 张子腾,王文烨,郑卓琳,袁亚洲. 基于模糊神经网络的工业数据流优先级适配机制. 移动通信. 2023(08): 39-45 .
    6. 袁健,徐舒,龙湛,潘桂新,林作志. MEC边缘云能力开放研究与实践. 邮电设计技术. 2023(11): 55-61 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1281) PDF downloads (210) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return